/    /  Prof. Esmir Pilav Ph.D.
Prof. dr. Esmir Pilav

NAME AND SURNAME: Esmir Pilav
ACADEMIC TITLE: Full Professor
TELEPHONE NUMBER: ++ 387 33 279 935
CABINET NUMBER:  447
E-MAIL: esmir.pilav@pmf.unsa.ba, esmirpilav@gmail.com
CONSULTATIONS: Monday: 08:00 – 09:00, Wednesday: 08:00 – 10:00, Friday: 08:00 – 10:00

Education

  • Doctor of Mathematics, 2011, Department of Mathematics, Faculty of Science, University of Sarajevo
  • Master of Mathematical Sciences, 2009, Department of Mathematics, Faculty of Science, University of Sarajevo
  • Graduated in mathematics and computer science, 2004, Department of Mathematics, Faculty of Science, University of Sarajevo

Academic experience

  • 2020- Vice Dean for General Affairs and Finance
  • 2015 – 2020 Head of the Department of Mathematics
  • 2018 – until today, full professor at the Department of Mathematics, Faculty of Science, University of Sarajevo
  • 2015 – 2018 associate professor at the Department of Mathematics, Faculty of Science, University of Sarajevo
  • 2011 – 2015 assistant professor at the Department of Mathematics, Faculty of Science, University of Sarajevo
  • 2009 – 2011 senior assistant at the Department of Mathematics, Faculty of Science, University of Sarajevo
  • 2004 – 2009 assistant at the Department of Mathematics, Faculty of Science, University of Sarajevo

Scientific papers

  1. Kalabušić, S., Pilav, E. Global behavior of a class of discrete epidemiological SI models with constant recruitment of susceptibles. Journal of Difference Equations and Applications, (2022), (to appear)
  2. Kalabušić, S., Pilav, E. Bifurcations, Permanence and Local Behavior of the Plant-Herbivore Model with Logistic Growth of Plant Biomass. Qual. Theory Dyn. Syst. 21, 26 (2022). https://doi.org/10.1007/s12346-022-00561-6
  3. M. R. S. Kulenović, Connor O’Loughlin and Esmir Pilav, The Neimark-Sacker bifurcation and global stability of perturbation of sigmoid Beverton-Holt difference equation, Discrete Dynamics in Nature and Society, Volume 2021, Article ID 2092709, https://doi.org/10.1155/2021/2092709
  4. S. Kalabušić and E. Pilav, Stability of the May’s host-parasitoid model with variable stocking upon parasitoids, International Journal of Biomathematics, 2021, (accepted)
  5. J. Bektešević, V. Hadžiabdić, M. Mehuljić, S. Kalabušić and E. Pilav, Dynamics of a class of host-parasitoid models with external stocking upon parasitoids, Adv Differ Equ 2021, 31 (2021). https://doi.org/10.1186/s13662-020-03193-9
  6. S. Kalabušić, Dž. Drino and E. Pilav, Period-doubling and Neimark-Sacker bifurcations of a Beddington host-parasitoid model with a host refuge effect, International Journal of Bifurcation and Chaos,
  7. M.R.S. Kulenović, Naida Mucić and Esmir Pilav, Period-Doubling and Naimark-Sacker Bifurcations of Certain Second Order Quadratic Fractional Difference Equations, International Journal of Difference Equations, Volume 15, Number 1 (2020) pages 121-152.
  8. S. Kalabušić, Dž. Drino and E. Pilav, Global behavior and bifurcation in a class of host-parasitoid models with a constant host refuge, Qualitative Theory of Dynamical Systems, 19, Article number: 66 (2020).
  9. E. Bešo, S. Kalabušić, N. Mujić and E. Pilav, Boundedness of solutions and stability of certain second-order difference equation with quadratic term  Advances in Difference Equations, 2020, 19 (2020). https://doi.org/10.1186/s13662-019-2490-9.
  10. E. Bešo, S. Kalabušić, N. Mujić and E. Pilav, Stability of a certain class of a host-parasitoid models with a spatial refuge effect, Journal of Biological Dynamics, (2020), 14:1, 1-31, DOI: 10.1080/17513758.2019.1692916
  11. S. Kalabušić, E. Bešo, N. Mujić and E. Pilav, Stability analysis of a certain class of difference equations by using KAM theory, Advances in Difference Equations, 2019(1) DOI: 10.1186/s13662-019-2148-7.
  12. E. Bešo, S. Kalabušić, N. Mujić and E. Pilav, “Neimark-Sacker bifurcation and stability of a certain class of a host-parasitoid models with a host refuge effect”,  International Journal of Bifurcation and Chaos, 29(12), 2019, DOI: 10.1142/S0218127419501694 .
  13. Emin Bešo. Naida Mujić, Senada Kalabušić and Esmir Pilav, Basin of attraction of the fixed point and period-two solutions of a certain anti-competitive map, Journal of Computational Analysis and Applications, 28(1):24-34, 2020.
  14. M. R. S. Kulenović, E. Pilav and N. Mujić, Birkhoff Normal Forms, KAM theory and continua of periodic points for certain planar system, Journal of Computational Analysis and Applications, VOL. 27, NO.3,  2019.
  15. A. Bilgin, M.R.S. Kulenović, A. Brett and E. Pilav, Global Dynamics of Cooperative Discrete System in the Plane, International Journal of Bifurcation and Chaos, Vol. 28, No. 7 (2018) 1830022 (17 pages), DOI: 10.1142/S0218127418300227
  16. S. Kalabušić, N. Mujić and E. Pilav, The Invariant Curve in a Planar System of Difference Equations, Advances in Dynamical Systems and Applications, vol. 13. no.1, 2018.
  17. V. Hadžiabdić, M. R. S. Kulenović and E. Pilav, Global stability of a quadratic anti-competitive system of rational difference equations in the plane with Allee effects, Journal of Computational Analysis and Applications, vol. 25, no. 6, pp. 1132–1144, 2018.
  18. J. Bektešević, M.R.S. Kulenović, E.Pilav, Global Dynamics of the Polynomial Second Order Difference Equation in the First Quadrant, Communications on Applied Nonlinear Analysis,  vol. 24, no. 4, pp. 46–81, 2017.
  19. Vahidin Hadžiabdić, Mustafa R.S. Kulenović and Esmir Pilav, Bifurcation and Global Dynamics of a Leslie-Gower Type Competitive System of Rational Difference Equations with Quadratic Terms, Abstract and Applied Analysis, vol. 2017, 2017. DOI: 10.1155/2017/3104512
  20. T. Khyat, M.R.S. Kulenović and E. Pilav, The invariant curve caused by Neimark-Sacker bifurcation of a perturbed Beverton-Holt difference equation, International Journal of Difference Equations, ISSN 0973-6069, Volume 12, Number 2, pp. 267–280 (2017)
  21. T. Khyat, M.R.S Kulenović, E. Pilav, The Naimark-Sacker bifurcation and symptotic approximation of the invariant curve of a certain difference equation, Journal of Computational Analysis and Applications, vol. 23, no. 8, pp. 1335–1346, 2017.
  22. M.R.S Kulenović, E. Pilav, Asymptotic approximations of the stable and unstable manifolds of the fixed point of a certain rational map by using functional equation, Sarajevo Journal of Mathematics, Vol.12 (25), No.2, (2016), 233–250
  23. Erin Denette, Mustafa Kulenović, Esmir Pilav: “Birkhoff Normal Forms, KAM Theory and Time Reversal Symmetry for Certain Rational Map”, Mathematics 03/2016; 4(1):20. DOI:10.3390/math4010020
  24. Arzu Bilgin, Mustafa R.S. Kulenovic, Esmir Pilav: Basins of attraction of period-two solutions of monotone difference equations. Advances in Difference Equations 03/2016; 2016(2016:74):25. DOI:10.1186/s13662-016-0801-y
  25. S. Jasarević-Hrustić, Z.Nurkanović, M.R.S. Kulenović and E.Pilav, “Birkhoff Normal Forms, KAM theory and Symmetries for Certain Second Order Rational Difference Equation with Quadratic Term”, International Journal of Difference Equations, ISSN 0973-6069, Volume 10, Number 2, pp. 181–199 (2015)
  26. J. Bektešević, M.RS. Kulenović, E. Pilav, “Asymptotic approximations of a stable and unstable manifolds of a two-dimensional quadratic map, Journal of Computational Analysis and Applications, vol. 21, no. 1, pp. 35–51, 2016.
  27. J. Bektešević, M.RS. Kulenović, E. Pilav, “Global Dynamics of Cubic Second Order Difference Equation in the First Quadrant”, Advances in Difference Equations, 2015(2015:176):38., DOI:10.1186/s13662-015-0503-x
  28. J. Bektešević, M.RS. Kulenović, E. Pilav, “Asymptotic Approximations of the Stable and Unstable Manifolds of Fixed Points of a Two-dimensional Cubic Map”, International Journal of Difference Equations 05/2015; 10(1):39-58.
  29. M.R.S. Kulenović, E. Pilav and E. Silić, “Naimark-Sacker Bifurcation of a Certain Second Order Quadratic Fractional Difference Equation‍”, Journal of Mathematical and Computational Science, 09/2014; 4(6):1044-1054.
  30. V. Hadžiabdić, M.R.S. Kulenović, and E. Pilav, “Dynamics of a Competitive System of Rational Difference Equations with Quadratic Terms”, Advances in Difference Equations 11/2014; 2014:301. DOI:10.1186/1687-1847-2014-301
  31. S. Kalabušić, M. R. S. Kulenović, and E. Pilav, “Basins of Attraction of Certain Linear Fractional System of Difference Equations in the Plane”, International Journal of Difference Equations, 08/2014; 9(2):207-222.
  32. M.R.S. Kulenović, E. Pilav and E. Silić, “Local Dynamics and Global Attractivity of a Certain  Second Order Quadratic Fractional Difference Equation”, Advances in Difference Equations, 2014:68 doi:10.1186/1687-1847-2014-68
  33. M. R. S. Kulenović, Z. Nurkanović and E. Pilav, “Birkhoff Normal Forms and KAM theory for  Gumowski-Mira Equation”, The Scientific World Journal, Volume 2014, Article ID 819290, 8 pages DOI:10.1155/2014/819290
  34. J. Bektešević, M.R.S. Kulenović, and E. Pilav: “Global Dynamics of Quadratic Second Order Difference Equation in the First Quadrant”, Applied Mathematics and Computation, Volume 227, 15 January 2014, Pages 50–65.
  35. S. Kalabušić, M. R. S. Kulenović, and E. Pilav, “Global Dynamics of Anti-Competitive Systems in the Plane,” Dynamics of Continuous, Discrete and Impulsive Systems    Series  A:  Mathematical Analysis, vol. 20, no. 4, pp. 477–505, 2013
  36. S. Kalabušić, M.R.S. Kulenović, and E. Pilav, “Global Dynamics of an Anti-Competitive System of Rational Difference Equations in the Plane”, Journal of Difference Equations and Applications, Volume 19, Issue 11, November 2013, pages 1849-1871, DOI:10.1080/10236198.2013.787420
  37. S. Kalabušić, M. R. S. Kulenović, and E. Pilav, “Multiple Attractors for a Competitive System of Rational Difference Equations in the Plane,” Abstract and Applied Analysis, vol. 2011, Article ID 295308, 35 pages, 2011. doi:10.1155/2011/295308
  38. S. Kalabušić, M.R.S. Kulenović, and E. Pilav, “Dynamics of a Two-dimensional System of Rational Difference Equations of Leslie-Gower type”, Advances in Difference Equations 2011, 2011:29 doi:10.1186/1687-1847-2011-29
  39. Kalabušić, M.R.S. Kulenović, and E. Pilav, “Global Dynamics of a Competitive System of Rational Difference Equations in the Plane”, Advances in Difference Equations, (2009), Article ID 132802, 30 pages.
  40. S. Kalabušić, E. Pilav, “Bifurkacije i haos u nekim ekonomskim modelima”, Zbornik radova Ekonomskog fakulteta u Sarajevu, Issue no. 29 /2009, pp 495-511, ISSN 0581- 7439.
  41. E. Pilav, B. Ramić-Brkić: “Real-time Image Based Rendering Using Limited Resources”, Spring Conference on Computer Graphics (SCCG), April 24th – 26th, (2008), Budmerice Castle, Slovakia