/    /  Prof. dr. Esmir Pilav
Prof. dr. Esmir Pilav

IME I PREZIME:  Esmir Pilav
AKADEMSKO ZVANJE:  Redovni profesor
BROJ TELEFONA:  ++ 387 33 279 935
BROJ KABINETA:  447
E-MAIL:  esmir.pilav@pmf.unsa.ba, esmirpilav@gmail.com
KONSULTACIJE: Ponedjeljak: 08:00 – 09:00, Srijeda: 08:00 – 10:00, Petak: 08:00 – 10:00

Obrazovanje

  • Doktor matematičkih nauka, 2011, Odsjek za matematiku, Prirodno-matematički fakultet  Univerzitet u Sarajevu
  • Magistar matematičkih nauka, 2009, Odsjek za matematiku, Prirodno-matematički fakultet  Univerzitet u Sarajevu
  • Diplomirani matematičar-informatičar, 2004, Odsjek za matematiku, Prirodno-matematički fakultet  Univerzitet u Sarajevu

Akademsko iskustvo

  • 2020- Prodekan za opće poslove i finansije
  • 2015. – 2020. Šef Odsjeka za matematiku
  • 2018.- do danas  redovni profesor na Odsjeku za matematiku Prirodno-matematičkog fakulteta Univerziteta u Sarajevu
  • 2015. – 2018  vanredni profesor na Odsjeku za matematiku Prirodno-matematičkog fakulteta Univerziteta u Sarajevu
  • 2011. – 2015. docent na Odsjeku za matematiku Prirodno-matematičkog fakulteta Univerziteta u Sarajevu
  • 2009. –  2011.  viši asistent na Odsjeku za matematiku Prirodno-matematičkog fakulteta Univerziteta u Sarajevu
  • 2004. – 2009. asistent na Odsjeku za matematiku Prirodno-matematičkog fakulteta Univerziteta u Sarajevu

Naučni radovi

  1. E. Bešo, S. Kalabušić, A. Linero-Bas, D. Nieves-Roldan and E. Pilav, A generalized Beddington host-parasitoid model with an arbitrary parasitism escape function, International Journal of Bifurcation and Chaos, 2024. (prihvaćen za objavljivanje)
  2. E. Bešo, Dž. Drino, S. Kalabušić, D. Kovačević and E. Pilav, Stability and bifurcations of a host-parasitoid model with general host escape function and general stocking upon parasitoids, International Journal of Biomathematics, 2024. (prihvaćen za objavljivanje)
  3. E. Bešo, S. Kalabušić and E. Pilav, Food-limited plant–herbivore model: Bifurcations, persistence, and stability, Mathematical Biosciences, Volume 370, 2024, 109157, ISSN 0025-5564, https://doi.org/10.1016/j.mbs.2024.109157. (https://www.sciencedirect.com/science/article/pii/S0025556424000178)
  4. E. Bešo, S. Kalabušić and E. Pilav, Dynamics of the discrete-time Rosenzweig-MacArthur predator-prey system in the closed positively invariant set, Computational and Applied Mathematics, (2023), (to appear)
  5. E. Bešo, A. Bilgin, S. Kalabušić and E. Pilav,  Dynamics of a plant-herbivore model subject to allee effects with logistic growth of plant biomass, International Journal of Bifurcation and Chaos, (2023), (to appear)
  6. E. Bešo, S. Kalabušić and E. Pilav,  Dynamics of a plant-herbivore system with Ricker plant growth and the strong Allee effects on plant populatio, Discrete and Continuous Dynamical Systems Series B (DCDS-B), AIMS, 2023, https://doi:10.3934/dcdsb.2023108
  7. Kalabušić, S., Pilav, E.,The behavior of a host-parasitoid model with host logistic growth and proportional refuge, International Journal of Biomathematics, (2023), https://doi.org/10.1142/S1793524523500432
  8. Kalabušić S., Drino, Dž., Pilav, E. (2023). Bifurcation and Stability of a Ricker Host-Parasitoid Model with a Host Constant Refuge and General Escape Function. In: Elaydi, S., Kulenović, M.R.S., Kalabušić, S. (eds) Advances in Discrete Dynamical Systems, Difference Equations and Applications. ICDEA 2021. Springer Proceedings in Mathematics & Statistics, vol 416. Springer, Cham. https://doi.org/10.1007/978-3-031-25225-9_12
  9. Kalabušić, S., Pilav, E.The behavior of a class host-parasitoid models with host refuge and strong Allee effect upon the host population, Journal of Biological Systems, (2023), https://doi.org/10.1142/S0218339023500274
  10. Kalabušić, S., Pilav, E. Global behavior of a class of discrete epidemiological SI models with constant recruitment of susceptibles. Journal of Difference Equations and Applications, (2022), 28:2, 259-288, DOI: 10.1080/10236198.2022.2042277
  11. Kalabušić, S., Pilav, E. Bifurcations, Permanence and Local Behavior of the Plant-Herbivore Model with Logistic Growth of Plant Biomass. Qual. Theory Dyn. Syst. 21, 26 (2022). https://doi.org/10.1007/s12346-022-00561-6
  12. S. Kalabušić and E. Pilav, Stability of the May's host-parasitoid model with variable stocking upon parasitoids, International Journal of Biomathematics, Vol. 15, No. 02, 2150072 (2022), https://doi.org/10.1142/S1793524521500728
  13. M. R. S. Kulenović, Connor O'Loughlin and Esmir Pilav, The Neimark-Sacker bifurcation and global stability of perturbation of sigmoid Beverton-Holt difference equation, Discrete Dynamics in Nature and Society, Volume 2021, Article ID 2092709, https://doi.org/10.1155/2021/2092709
  14. J. Bektešević, V. Hadžiabdić, M. Mehuljić, S. Kalabušić and E. Pilav, Dynamics of a class of host-parasitoid models with external stocking upon parasitoids, Adv Differ Equ 2021, 31 (2021). https://doi.org/10.1186/s13662-020-03193-9
  15. S. Kalabušić, Dž. Drino and E. Pilav, Period-doubling and Neimark-Sacker bifurcations of a Beddington host-parasitoid model with a host refuge effect, International Journal of Bifurcation and Chaos, Vol. 30, No. 16, 2050254 (2020)
  16. M.R.S. Kulenović, Naida Mucić and Esmir Pilav, Period-Doubling and Naimark-Sacker Bifurcations of Certain Second Order Quadratic Fractional Difference Equations, International Journal of Difference Equations, Volume 15, Number 1 (2020) pages 121-152.
  17. S. Kalabušić, Dž. Drino and E. Pilav, Global behavior and bifurcation in a class of host-parasitoid models with a constant host refuge, Qualitative Theory of Dynamical Systems, 19, Article number: 66 (2020).
  18. E. Bešo, S. Kalabušić, N. Mujić and E. Pilav, Boundedness of solutions and stability of certain second-order difference equation with quadratic term  Advances in Difference Equations, 2020, 19 (2020). https://doi.org/10.1186/s13662-019-2490-9.
  19. E. Bešo, S. Kalabušić, N. Mujić and E. Pilav, Stability of a certain class of a host-parasitoid models with a spatial refuge effect, Journal of Biological Dynamics, (2020), 14:1, 1-31, DOI: 10.1080/17513758.2019.1692916
  20. S. Kalabušić, E. Bešo, N. Mujić and E. Pilav, Stability analysis of a certain class of difference equations by using KAM theory, Advances in Difference Equations, 2019(1) DOI: 10.1186/s13662-019-2148-7.
  21. E. Bešo, S. Kalabušić, N. Mujić and E. Pilav, “Neimark-Sacker bifurcation and stability of a certain class of a host-parasitoid models with a host refuge effect”,  International Journal of Bifurcation and Chaos, 29(12), 2019, DOI: 10.1142/S0218127419501694 .
  22. Emin Bešo. Naida Mujić, Senada Kalabušić and Esmir Pilav, Basin of attraction of the fixed point and period-two solutions of a certain anti-competitive map, Journal of Computational Analysis and Applications, 28(1):24-34, 2020.
  23. M. R. S. Kulenović, E. Pilav and N. Mujić, Birkhoff Normal Forms, KAM theory and continua of periodic points for certain planar system, Journal of Computational Analysis and Applications, VOL. 27, NO.3,  2019.
  24. A. Bilgin, M.R.S. Kulenović, A. Brett and E. Pilav, Global Dynamics of Cooperative Discrete System in the Plane, International Journal of Bifurcation and Chaos, Vol. 28, No. 7 (2018) 1830022 (17 pages), DOI: 10.1142/S0218127418300227
  25. S. Kalabušić, N. Mujić and E. Pilav, The Invariant Curve in a Planar System of Difference Equations, Advances in Dynamical Systems and Applications, vol. 13. no.1, 2018.
  26. V. Hadžiabdić, M. R. S. Kulenović and E. Pilav, Global stability of a quadratic anti-competitive system of rational difference equations in the plane with Allee effects, Journal of Computational Analysis and Applications, vol. 25, no. 6, pp. 1132–1144, 2018.
  27. J. Bektešević, M.R.S. Kulenović, E.Pilav, Global Dynamics of the Polynomial Second Order Difference Equation in the First Quadrant, Communications on Applied Nonlinear Analysis,  vol. 24, no. 4, pp. 46–81, 2017.
  28. Vahidin Hadžiabdić, Mustafa R.S. Kulenović and Esmir Pilav, Bifurcation and Global Dynamics of a Leslie-Gower Type Competitive System of Rational Difference Equations with Quadratic Terms, Abstract and Applied Analysis, vol. 2017, 2017. DOI: 10.1155/2017/3104512
  29. T. Khyat, M.R.S. Kulenović and E. Pilav, The invariant curve caused by Neimark-Sacker bifurcation of a perturbed Beverton-Holt difference equation, International Journal of Difference Equations, ISSN 0973-6069, Volume 12, Number 2, pp. 267–280 (2017)
  30. T. Khyat, M.R.S Kulenović, E. Pilav, The Naimark-Sacker bifurcation and symptotic approximation of the invariant curve of a certain difference equation, Journal of Computational Analysis and Applications, vol. 23, no. 8, pp. 1335–1346, 2017.
  31. M.R.S Kulenović, E. Pilav, Asymptotic approximations of the stable and unstable manifolds of the fixed point of a certain rational map by using functional equation, Sarajevo Journal of Mathematics, Vol.12 (25), No.2, (2016), 233–250
  32. Erin Denette, Mustafa Kulenović, Esmir Pilav: “Birkhoff Normal Forms, KAM Theory and Time Reversal Symmetry for Certain Rational Map”, Mathematics 03/2016; 4(1):20. DOI:10.3390/math4010020
  33. Arzu Bilgin, Mustafa R.S. Kulenovic, Esmir Pilav: Basins of attraction of period-two solutions of monotone difference equations. Advances in Difference Equations 03/2016; 2016(2016:74):25. DOI:10.1186/s13662-016-0801-y
  34. S. Jasarević-Hrustić, Z.Nurkanović, M.R.S. Kulenović and E.Pilav, “Birkhoff Normal Forms, KAM theory and Symmetries for Certain Second Order Rational Difference Equation with Quadratic Term”, International Journal of Difference Equations, ISSN 0973-6069, Volume 10, Number 2, pp. 181–199 (2015)
  35. J. Bektešević, M.RS. Kulenović, E. Pilav, “Asymptotic approximations of a stable and unstable manifolds of a two-dimensional quadratic map, Journal of Computational Analysis and Applications, vol. 21, no. 1, pp. 35–51, 2016.
  36. J. Bektešević, M.RS. Kulenović, E. Pilav, “Global Dynamics of Cubic Second Order Difference Equation in the First Quadrant”, Advances in Difference Equations, 2015(2015:176):38., DOI:10.1186/s13662-015-0503-x
  37. J. Bektešević, M.RS. Kulenović, E. Pilav, “Asymptotic Approximations of the Stable and Unstable Manifolds of Fixed Points of a Two-dimensional Cubic Map”, International Journal of Difference Equations 05/2015; 10(1):39-58.
  38. M.R.S. Kulenović, E. Pilav and E. Silić, “Naimark-Sacker Bifurcation of a Certain Second Order Quadratic Fractional Difference Equation‍”, Journal of Mathematical and Computational Science, 09/2014; 4(6):1044-1054.
  39. V. Hadžiabdić, M.R.S. Kulenović, and E. Pilav, “Dynamics of a Competitive System of Rational Difference Equations with Quadratic Terms”, Advances in Difference Equations 11/2014; 2014:301. DOI:10.1186/1687-1847-2014-301
  40. S. Kalabušić, M. R. S. Kulenović, and E. Pilav, “Basins of Attraction of Certain Linear Fractional System of Difference Equations in the Plane”, International Journal of Difference Equations, 08/2014; 9(2):207-222.
  41. M.R.S. Kulenović, E. Pilav and E. Silić, “Local Dynamics and Global Attractivity of a Certain  Second Order Quadratic Fractional Difference Equation”, Advances in Difference Equations, 2014:68 doi:10.1186/1687-1847-2014-68
  42. M. R. S. Kulenović, Z. Nurkanović and E. Pilav, “Birkhoff Normal Forms and KAM theory for  Gumowski-Mira Equation”, The Scientific World Journal, Volume 2014, Article ID 819290, 8 pages DOI:10.1155/2014/819290
  43. J. Bektešević, M.R.S. Kulenović, and E. Pilav: “Global Dynamics of Quadratic Second Order Difference Equation in the First Quadrant”, Applied Mathematics and Computation, Volume 227, 15 January 2014, Pages 50–65.
  44. S. Kalabušić, M. R. S. Kulenović, and E. Pilav, “Global Dynamics of Anti-Competitive Systems in the Plane,” Dynamics of Continuous, Discrete and Impulsive Systems    Series  A:  Mathematical Analysis, vol. 20, no. 4, pp. 477–505, 2013
  45. S. Kalabušić, M.R.S. Kulenović, and E. Pilav, “Global Dynamics of an Anti-Competitive System of Rational Difference Equations in the Plane”, Journal of Difference Equations and Applications, Volume 19, Issue 11, November 2013, pages 1849-1871, DOI:10.1080/10236198.2013.787420
  46. S. Kalabušić, M. R. S. Kulenović, and E. Pilav, “Multiple Attractors for a Competitive System of Rational Difference Equations in the Plane,” Abstract and Applied Analysis, vol. 2011, Article ID 295308, 35 pages, 2011. doi:10.1155/2011/295308
  47. S. Kalabušić, M.R.S. Kulenović, and E. Pilav, “Dynamics of a Two-dimensional System of Rational Difference Equations of Leslie-Gower type”, Advances in Difference Equations 2011, 2011:29 doi:10.1186/1687-1847-2011-29
  48. Kalabušić, M.R.S. Kulenović, and E. Pilav, “Global Dynamics of a Competitive System of Rational Difference Equations in the Plane”, Advances in Difference Equations, (2009), Article ID 132802, 30 pages.
  49. S. Kalabušić, E. Pilav, “Bifurkacije i haos u nekim ekonomskim modelima”, Zbornik radova Ekonomskog fakulteta u Sarajevu, Issue no. 29 /2009, pp 495-511, ISSN 0581- 7439.
  50. E. Pilav, B. Ramić-Brkić: “Real-time Image Based Rendering Using Limited Resources”, Spring Conference on Computer Graphics (SCCG), April 24th – 26th, (2008), Budmerice Castle, Slovakia