Program	Level		Second cycle						
	Name of the program		Pure Mathematics						
	-		COURSE						
Course title	Selected Topics in Number Theory								
Course code	Semester	Course stat	us	ECTS	Contact	hours			
					(L+AE+LE)				
PMAT 540	III	Elective course		7	3+2+0				
Lecturer									
Course Goals	The main goal of the course is to develop some of the advanced topics in the field of								
	number theory according to the interest of students and approved by the teacher.								
Learning Outcomes	After completing this course, students should demonstrate competency in the following								
	skills:								
	- Improve knowledge of number theory;								
	- Acquire some knowledge required to be able to do some scientific research in								
	number theory independently.								
COURSE CONTENT									

The content of this course is not fixed a priori. The teacher will fix the topics according to the student's interests. Possible topics include elliptic curves, modular forms, Dedekind sums, additive problems in number theory, especially the Hardy–Littlewood circle method, sieves methods, Selberg class, and its properties, etc.

LITERATURE

Bibliography items depend on the selected topics by the teacher and in accordance to the student's interest. Basically, it may include:

- [1] F. Diamond, J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, Springer Verlag, 2007.
- [2] J. H. Bruinier, G. Van der Geer, G. Harder, D. Zagier, The 1-2-3- of Modular Forms: Lectures at Summer School in Nordfjordeid, Norway, Springer Verlag, 2008.
- [3] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics, Springer Verlag, 2009.
- [4] H. Rademacher, E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs 16, 1972.
- [5] M. B. Nathanson, Additive Number Theory The Classical Bases, Graduate Texts in Mathematics, Springer Verlag, 1996.
- [6] J. B. Friedlander, D. R. Heath-Brown, H. Iwaniec, J. Kaczorowski, Analytic Number Theory, Cetraro, Italy 2002, Lecture Notes in Mathematics 1891, Springer Verlag, 2006.
- [7] H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS Colloquium Publications vol. 53, Providence, Rhode Island, 2004.

STUDENT WORKLOAD (hours in a semester)										
Lectures	45	Exercises	30	Individual work	100	Total	175			
	GRA	DING	REMARKS							
Criterion		Maximum	Minimum							
		points	points							
Midterm exams										
Project										
Final exam										
Total		100	55							