

COURSE CONTENT

- Euclidean domains. Integral domains of Gaussian and Eisenstein integers.
- Dedekind rings.
- Valuation and exponent.
- Finitely generated modules over Dedekind domains.
- Algebraic numbers and algebraic integers.
- Norm and discriminant.
- Integral bases.
- Valuations of algebraic number fields.
- Ideal classes.
- Units.
- Euclidean algorithm on algebraic number fields.
- The homomorphisms of injection and norm.
- Different and discriminant.
- Factorization of prime ideals in extensions.

LITERATURE

[1] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed, Springer Verlag and PWN, 1990.
[2] J. Esmonde, M. R. Murty, Problems in Algebraic Number Theory, 2nd ed., Graduate Texts in Mathematics, Springer Verlag, 2005.
[3] J. Neukirch, Algebraic Number Theory, Springer Verlag, 1999.
[4] S. Lang, Algebraic Numbers, Addison-Wesley Publishing Company Inc., 1964.

STUDENT WORKLOAD (hours in a semester)							
Lectures	45	Exercises	30	Individual work	125	Total	200
GRADING				REMARKS			
Criterion		Maximum points	Minimum points				
Midterm exams		40	22				
Zadaće		20	10				
Final exam		40	23				
Total		100	55				

