| Program         | Level                                                                                    |               | First cycle                           |      |           |       |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------|---------------|---------------------------------------|------|-----------|-------|--|--|--|--|--|
|                 | Name of the program                                                                      |               | Pure Mathematics, Applied Mathematics |      |           |       |  |  |  |  |  |
| COURSE          |                                                                                          |               |                                       |      |           |       |  |  |  |  |  |
| Course title    | Introduction to Functional Analysis                                                      |               |                                       |      |           |       |  |  |  |  |  |
| Course code     | Semester                                                                                 | Course status | 3                                     | ECTS | Contact   | hours |  |  |  |  |  |
|                 |                                                                                          |               |                                       |      | (L+AE+LE) |       |  |  |  |  |  |
| PMAT 370        | VI                                                                                       | Mandatory co  | ourse                                 | 5    | 2+2+0     |       |  |  |  |  |  |
| Lecturer        |                                                                                          |               |                                       |      |           |       |  |  |  |  |  |
| Course Goals    | The content of this course is required for a complete understanding of the theory of     |               |                                       |      |           |       |  |  |  |  |  |
|                 | ordinary and partial differential equations, real and complex analysis.                  |               |                                       |      |           |       |  |  |  |  |  |
| Learning        | This course offers both detailed comprehension of elements of functional analysis and an |               |                                       |      |           |       |  |  |  |  |  |
| Outcomes        | advanced mastering of the generally used techniques in this discipline.                  |               |                                       |      |           |       |  |  |  |  |  |
| COLIDEE CONTENT |                                                                                          |               |                                       |      |           |       |  |  |  |  |  |

## COURSE CONTENT

- Topological and metric spaces.
- Normed and Banach spaces.
- Linear operators.
- Hahn-Banach theorem.
- Open mapping theorem.
- Closed graph theorem.
- Banach-Steinhauss theorem. Examples
- Reflexivity
- Adoint operator.
- Totally continuous operators.
- Invariant subspaces.
- Hilbert spaces. Elementary properties. Examples.
- Orthogonality.

## LITERATURE

- [1] Bela Bollobas, Linear Analysis, An Introductory course, Cambridge University Press, 1990.
- [2] Erwin Kreyszig, Introductory functional analysis with applications, New York etc.: John Wiley & Sons. XIV

| STUDENT WORKLOAD (hours in a semester) |     |           |         |                 |    |       |     |  |  |  |  |
|----------------------------------------|-----|-----------|---------|-----------------|----|-------|-----|--|--|--|--|
| Lectures                               | 30  | Exercises | 30      | Individual work | 65 | Total | 125 |  |  |  |  |
|                                        | GRA | DING      | REMARKS |                 |    |       |     |  |  |  |  |
| Criterion                              |     | Maximum   | Minimum |                 |    |       |     |  |  |  |  |
|                                        |     | points    | points  |                 |    |       |     |  |  |  |  |
| Midterm exams                          |     | 60        | 30      |                 |    |       |     |  |  |  |  |
| Final exam                             |     | 40        | 25      |                 |    |       |     |  |  |  |  |
| Total                                  |     | 100       | 55      |                 |    |       |     |  |  |  |  |