Program Name of the program Pure Mathematics, Applied Mathematics, Mathematics and Informatics Education Course title COURSE Course code Semester Course status ECTS Contact hc Course code Semester Course status ECTS Contact hc PMAT260 IV Mandatory course 5 3+2+0 Lecturer Ite goal of this course is to introduce students to axiomatic systems in class geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: - Understand the basics related to axiomatic systems in geometry Learning - Understand the main concept regarding incidence geometry, plane geometry, neue Euclidean and hyperbolic geometry Outcomes - Understand the role of the axiom of parallels in geometry - Understand the role of the axiom of parallels in geometry - Understand the role of triangles, quadrilaterals, theorem of Saccheri and Legender propositions equivalent to the fifth postulate of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legender propositions equivalent to the fifth postulate of Euclidean geometry - Neutral geometry, congruences of Euclidean geometry - Cordecometr	Lev		vel First		cycle					
Course title Course status ECTS Contact he PMAT260 IV Mandatory course 5 3+2+0 Lecturer Integration of this course is to introduce students to axiomatic systems in class geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: Learning - Understand the basics of geometry end the basics related to axiomatic systems in geometry Understand the basics related to axiomatic systems in geometry - Understand the basics related to axiomatic systems in geometry Understand the basics related to axiomatic systems in geometry - Understand the main concept regarding incidence geometry, neur Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - Nations of incidence and incidence geometry - COURSE CONTENT - Axioms of plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legene propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Fueldean geometry, basic theorems of Euclidean geometry - <tr< td=""><td>Program</td><td></td><td colspan="2" rowspan="2"></td><td colspan="6">Pure Mathematics, Applied Mathematics, Mathematics</td></tr<>	Program				Pure Mathematics, Applied Mathematics, Mathematics					
Course title Geometry I Course code Semester Course status ECTS Contact he PMAT260 IV Mandatory course 5 3+2+0 Icture Lecturer The goal of this course is to introduce students to axiomatic systems in class geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: - Understand the basics related to axiomatic systems in geometry - Outcomes - Understand the main concept regarding incidence geometry, plane geometry, neue Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - - - Axioms of incidence and incidence geometry - Understand the role of the axiom of parallels in geometry - - Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, five axioms of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Euclidean geometry, basic theorems of Euclidean geometry - Constructions in neutral geometry, area in Euclidean geometry - Constructions in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry <t< td=""><td>-</td><td>Iname</td><td colspan="6"></td></t<>	-	Iname								
Course code Semester Course status ECTS Contact (L+AE+LE) PMAT260 IV Mandatory course 5 3+2+0 Lecturer The goal of this course is to introduce students to axiomatic systems in class geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: - Learning - Understand the basics related to axiomatic systems in geometry - Understand the basics related to axiomatic systems in geometry Outcomes - Understand the of the axiom of parallels in geometry - Understand the role of the axiom of parallels in geometry - Understand the role of the axiom of parallels in geometry - Understand the role of this geometry - Axioms of incidence and incidence geometry - Understand the role of this geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry Euclidean geometry - Area, the area postulate in neutral geometry, area in Euclidean geometry - Congruence transformations, similarity transformations - Euclidean geometry - Congruence transformations, similarity transformations - Treels in neutral and Euclidean geo										
PMAT260 IV Mandatory course 5 3+2+0 Lecturer The goal of this course is to introduce students to axiomatic systems in class geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: Understand the basics related to axiomatic systems in geometry Understand the main concept regarding incidence geometry, plane geometry, neur Euclidean and hyperbolic geometry Learn basics of geometric transformations, especially symmetries and their products Understand the role of the axiom of parallels in geometry Understand the role of the axiom of parallels in geometry Understand the role of the axiom of parallels in geometry Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclidean geometry Euclidean geometry, basic theorems of Euclidean geometry Constructions in neutral and Euclidean geometry										
Lecturer The goal of this course is to introduce students to axiomatic systems in class geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: - Understand the basics related to axiomatic systems in geometry Learning - Understand the main concept regarding incidence geometry, plane geometry, neue Euclidean and hyperbolic geometry Outcomes - Learn basics of geometric transformations, especially symmetries and their products - Understand the role of the axiom of parallels in geometry - Larn basics of geometry - Learn basics of plane geometry - Materstand the role of the axiom of parallels in geometry - Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legene propositions equivalent to the fifth postulate of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Euclidean geometry, basic theorems of Euclidean geometry - Constructions in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry - Congruence transformations, similarity transformations ITTERATURE [1] Mileva Prvanović, Osnori geometry. - Congruence transformations of Geometry. - Congruence transformations of Geometry. - Congruence transformations of Ge		Semes	ter Cours	e status		ECTS	(L+AE+LE)	hours	
Course Goals The goal of this course is to introduce students to axiomatic systems in class geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: - Understand the basics related to axiomatic systems in geometry Outcomes - Understand the main concept regarding incidence geometry, plane geometry, neur Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - Understand the role of the axiom of parallels in geometry - Axioms of incidence and incidence geometry - Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legene propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry - Euclidean geometry - Constructions in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry - Congruence transformations, similarity transformations III Mileva Prvanović, Onnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry. Ath edition. W. H. Freeman, New York, 2007. <t< td=""><td></td><td>IV</td><td colspan="2">Mandatory course</td><td></td><td>5</td><td></td><td>3+2+0</td><td></td></t<>		IV	Mandatory course			5		3+2+0		
Course Goals geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: - Understand the basics related to axiomatic systems in geometry Learning - Understand the main concept regarding incidence geometry, plane geometry, neur Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - Understand the role of the axiom of parallels in geometry - Understand the role of the axiom of parallels in geometry Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legene propositions equivalent to the fifth postulate of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Euclidean geometry, basic theorems of Euclidean geometry - Constructions in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry - Congruence transformations, similarity transformations - LITERATURE [1] Mileva Prvanović, Osnoni geometrije. Građevinarska knjiga, Beograd, 1987. - Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. - To t a 1 12 Idectures 45 Exer	Lecturer									
Learning - Understand the basics related to axiomatic systems in geometry Outcomes - Understand the main concept regarding incidence geometry, plane geometry, neur Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - Understand the role of the axiom of parallels in geometry - Understand the role of the axiom of parallels in geometry - Axioms of incidence and incidence geometry - - Neutral geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry - Saccheri and Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Area, the area postulate in neutral geometry, area in Euclidean geometry - Corgruence transformations, similarity transformations - Congruence transformations, similarity transformations - LITERATURE [1] Mileva Prvanović, Osnovi geometrie. Gradevinarska knjiga, Beograd, 1987. - [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. - STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 <t< td=""><td>Course Goals</td><td><u> </u></td><td colspan="8">The goal of this course is to introduce students to axiomatic systems in classical geometry and the basics of neutral, Euclidean and non-Euclidean geometry.</td></t<>	Course Goals	<u> </u>	The goal of this course is to introduce students to axiomatic systems in classical geometry and the basics of neutral, Euclidean and non-Euclidean geometry.							
Learning Outcomes - Understand the main concept regarding incidence geometry, plane geometry, neur Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - Understand the role of the axiom of parallels in geometry COURSE CONTENT - Axioms of incidence and incidence geometry - Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Area, the area postulate in neutral geometry, area in Euclidean geometry - Congruence transformations, similarity transformations II Mileva Prvanović, Osnoni geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, the dition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1										
Outcomes Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - Understand the role of the axiom of parallels in geometry Outcomes COURSE CONTENT - Axioms of incidence and incidence geometry Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legene propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Area, the area postulate in neutral geometry, area in Euclidean geometry - Congruence transformations, similarity transformations II Mileva Prvanović, Osnoni geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1										
 Learn basics of geometric transformations, especially symmetries and their products Understand the role of the axiom of parallels in geometry COURSE CONTENT Axioms of incidence and incidence geometry Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Constructions in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures Exercises Individual work To t a 1 GRADING 										
- Understand the role of the axiom of parallels in geometry - OURSE CONTENT - Axioms of incidence and incidence geometry - Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Area, the area postulate in neutral geometry, area in Euclidean geometry - Congruence transformations, similarity transformations UITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 [2] GRADING REMARKS										
COURSE CONTENT - Axioms of incidence and incidence geometry - Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legene propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry - Area, the area postulate in neutral geometry, area in Euclidean geometry - Constructions in neutral and Euclidean geometry - Congruence transformations, similarity transformations UITERATURE [1] Mileva Prvanović, Osnori geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 [2] GRADING REMARKS										
 Axioms of incidence and incidence geometry Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnori geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 										
 Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane SAS postulate Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometry. Pearson Education, 2011. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING 										
 SAS postulate Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legend propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING 										
 Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legene propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnori geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING 										
 propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING 	*									
 Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theor trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING 										
trigonometry Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations <u>LITERATURE</u> [1] Mileva Prvanović, <i>Osnovi geometrije</i> . Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, <i>Foundations of Geometry</i> . Pearson Education, 2011. [3] Marvin J. Greenber, <i>Euclidean and Non-Euclidean Geometry</i> , 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, <i>The Four Pillars of Geometry</i> . Springer Verlag, 2005. <u>STUDENT WORKLOAD (hours in a semester)</u> Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING REMARKS										
 Area, the area postulate in neutral geometry, area in Euclidean geometry Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. Ectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS 										
 Circles in neutral and Euclidean geometry Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. Ectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS 										
 Constructions in neutral and Euclidean geometry Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. Ectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS 										
 Congruence transformations, similarity transformations LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING 	÷ .									
LITERATURE [1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS	о .									
[2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS										
[3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS										
[4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005. STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a 1 12 GRADING										
STUDENT WORKLOAD (hours in a semester) Lectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS	[3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007.									
Lectures 45 Exercises 30 Individual work 50 T o t a l 12 GRADING REMARKS										
GRADING REMARKS										
	Lectures	45	Exercises	30	Individual	work	50	Total	125	
						REMARKS				
	Criterion		Maximum	Minimum						
points points										
Midterm exams 50 25	Midterm exams		50	25						
Final exam5025			50	25						
T o t a l 100 55	Total		100	55						