	Level			First cycle			
Program	Name of the program			Pure Mathematics, Applied Mathematics, Mathematics Education, Mathematics and Informatics Education			
COURSE							
Course title	Geometry I						
Course code	Semester		Course status	ECTS	$\begin{aligned} & \text { Contact } \\ & (\mathrm{L}+\mathrm{AE}+\mathrm{LE}) \end{aligned}$		hours
PMAT260	IV		Mandatory course	5	$3+2+0$		
Lecturer							
Course Goals	The goal of this course is to introduce students to axiomatic systems in classical geometry and the basics of neutral, Euclidean and non-Euclidean geometry. After completing this course, students should: - Understand the basics related to axiomatic systems in geometry - Understand the main concept regarding incidence geometry, plane geometry, neutral, Euclidean and hyperbolic geometry - Learn basics of geometric transformations, especially symmetries and their products - Understand the role of the axiom of parallels in geometry						
Learning Outcomes							
COURSE CONTENT							
- Axioms of incidence and incidence geometry - Plane geometry, five axioms of plane geometry, measurement of line segments and angles, half-plane and SAS postulate - Neutral geometry, criteria for congruence of triangles, quadrilaterals, theorem of Saccheri and Legendre, propositions equivalent to the fifth postulate of Euclid, rectangles and defect of a rectangle - Euclidean geometry, basic theorems of Euclidean geometry, similar triangles, Pythagorean theorem, trigonometry - Area, the area postulate in neutral geometry, area in Euclidean geometry - Circles in neutral and Euclidean geometry - Constructions in neutral and Euclidean geometry - Congruence transformations, similarity transformations							
LITERATURE							
[1] Mileva Prvanović, Osnovi geometrije. Građevinarska knjiga, Beograd, 1987. [2] Gerard A. Venema, Foundations of Geometry. Pearson Education, 2011. [3] Marvin J. Greenber, Euclidean and Non-Euclidean Geometry, 4th edition. W. H. Freeman, New York, 2007. [4] John Stillwell, The Four Pillars of Geometry. Springer Verlag, 2005.							
STUDENT WORKLOAD (hours in a semester)							
Lectures	45 E	Exercises	30	Individual work	50	Total	125
GRADING				REMARKS			
Criterion		Maximum points	Minimum points				
Midterm exams		50	25				
Final exam		50	25				
Total		100	55				

