Program	Level			First cycle				
	Name of the program			Theoretical Computer Science				
COURSE								
Course title	Linear Algebra							
Course code	Semester		Course status		ECTS	$\begin{aligned} & \text { Contact } \\ & (\mathrm{L}+\mathrm{AE}+\mathrm{LE}) \end{aligned}$		
PMAT 195	II		Mandatory course		6	$3+3+0$		
Lecturer								
Course Goals	This course introduces students to matrix algebra, vector spaces and linear transformations in finte dimensional vector spaces.							
Learning Outcomes	Upon successeful completion of the course students will be able to: - recognize and work with linear transformations and matrices of linear transformations, - apply tools from linear algebra in order to find eigenvalues and eigenvectors of matrices, - perform matrix decompositions, - identify, formulate, and solve mathematical and computer science problems which use tools from linear algebra.							
COURSE CONTENT								
- Linear systems, vector equations, matrix equations, - Linear transformations, matrix of a linear transformation, - Matrix algebra, invertible matrices, - Determinants, - Vector spaces, - Eigenavalues and eigenvectors, matrix diagonalization, - Orthogonal sets of vectors, inner product, orthogonal projections and Gramm-Schmidt process of orthogonalization, - Symmetric matrices and quadratic forms, singular values and SVD (singular value decomposition), - Geometry of vector spaces.								
LITERATURE								
[1] David C. Lay, Linear Algebra and Its Applications, Pearson (2015). [2] Gilbert Strang, Linear Algebra and Its Applications, Brooks Cole (2006), [3] Eric Lengyel, Mathematics for 3D Game Programming and Computer Graphics, Cengage (2011), [4] Sheldon Axler, Linear Algebra Done Right, Springer, 2004.								
STUDENT WORKLOAD (hours in a semester)								
Lectures	45 E	Exercises		45	Individual work	60	Total	150
GRADING					REMARKS			
Criterion		Maximum points		Minimum points				
Midterm exams		50		25				
Final exam		50		25				
Total		100		55				

