Program Name of the program All study programs COurse title Course code Semester Course status ECm Contact hours PMAT180 II Mandatory course 4 2+2+0 Lecture Course Goals The main aim of the course is to understand basic terms introduced in elementary number theory, and their relationships, and to prove their properties. During the course, students will be able to learn different proving methods (such as direct and indirect proof, method of mathematical induction, contraposition, etc.). After completing this course, students should demonstrate competency in the following skills: - Understand basic elementary number theory terms and apply classical elementary number theory methods; - Understand and be able to apply the Euclidean algorithm and its converse; - Outcomes Solve linear Diophantine equations and simple systems of Diophantine equations, as well as polynomial congruences and simple systems of one pruences; - Be able to apply drivisibility ters; - Be able to apply achieved knowledge to solve complex tasks from elementary number theory. - Divisibility, division algorithm, prime numbers. - Course to the given number for the given modulus and primitive roots modulo m; - Determine whether a given number theoremen. - -	Due e un er	Level	Firs	t cycle				
Course title Elementary Number Theory Course code Semester Course status ECTS Contact (L+AE+LE) PMAT180 II Mandatory course 4 2+2+0 Lecturer The main aim of the course is to understand basic terms introduced in elementary number theory, and their relationships, and to prove their properties. During the course, students will be able to learn different proving methods (such as direct and indirect proof, method of mathematical induction, contraposition, etc.). After completing this course, students should demonstrate competency in the following skills: Learning Outcomes - Understand basic elementary number theory terms and apply classical elementary number theory methods; - - Learning Outcomes - Understand and be able to apply the Euclidean algorithm and its converse; - Solve linear Diophantine equations and simple systems of congruences; - - Understand and apply divisibility tests; - - Determine whether a given number is quadratic residue or non-residue; - - Divisibility, division algorithm, prime numbers. - - Edel to calculate the order of the given functions. - - Gratest common divisor, least common multiple, Euclidean algorithm. - - - - Millson theorem, Little Fermat theorem, pseudoprime numbers. - - -<	Program	Name of the p	rogram All	study progra	ms			
Course code Semester Course staus ECTS Contact (1+AIE+LE) hours PMAT180 II Mandatory course 4 2+2+0 Lecturer The main aim of the course is to understand basic terms introduced in elementary number theory, and their relationships, and to prove their properties. During the course, students will be able to learn different proving methods (such as direct and indirect proof, method of mathematical induction, contraposition, etc.). After completing this course, students should demonstrate competency in the following skills: - Understand basic elementary number theory terms and apply classical elementary number theory methods; - Understand and be able to apply the Euclidean algorithm and its converse; - Solve linear Diophantine equations and simple systems of Diophantine equations, as well as polynomial congruences and simple systems of congruences; - Understand and apply divisibility tests; - Be able to calculate the order of the given number for the given modulus and primitive roots modulo m; - Determine whether a given number is quadratic residue or non-residue; - Be able to apply achieved knowledge to solve complex tasks from elementary number theory. - Fundamental theorem of arithmetics. - Linear Congruences, systems of linear congruences, Chinese remainder theorem. - Divisibility tests. - Willson theorem, Little Fermat theorem, pseudoprime numbers. - Linear congruences, systems of linear congruences, Chinese remainder theorem. - Divisibility tests. - Wi				RSE				
Course code Semester Course status ECTS Contact (L+AE+LE) hours (L+AE+LE) PMAT180 II Mandatory course 4 2+2+0 Lecturer The main aim of the course is to understand basic terms introduced in elementary number theory, and their relationships, and to prove their properties. During the course, students will be able to learn different proposition, etc.). After completing this course, students should demonstrate compretency in the following skills: - Understand basic elementary number theory terms and apply classical elementary number theory methods; - Understand and be able to apply the Euclidean algorithm and its converse; - Understand and be able to apply the Euclidean algorithm and its converse; - Solve linear Diophantine equations and simple systems of Diophantine equations, as well as polynomial congruences and simple systems of congruences; - Determine whether a given number is quadratic residue or non-residue; - Be able to apply achieved knowledge to solve complex tasks from elementary number theory. - Divisibility, division algorithm, prime numbers. - Euclidean algorithm. - Linear congruences, systems of linear congruences, Chinese remainder theorem. - - Divisibility tests. - - - Linea	Course title		Elen	nentary Nur	nber Th	eory		
Lecturer The main aim of the course is to understand basic terms introduced in elementary number theory, and their relationships, and to prove their properties. During the course, students will be able to learn different proving methods (such as direct and indirect proof, method of mathematical induction, contraposition, etc.). After completing this course, students should demonstrate competency in the following skills: Understand basic elementary number theory terms and apply classical elementary number theory methods; Understand and be able to apply the Euclidean algorithm and its converse; Solve linear Diophantine equations and simple systems of Congnuences; Understand and apply divisibility tests; Be able to calculate the order of the given number for the given modulus and primitive roots modulo m; Determine whether a given number is quadratic residue or non-residue; Be able to apply achieved knowledge to solve complex tasks from elementary number theory. Divisibility, division algorithm, prime numbers. Gratest common divisor, least common multiple, Euclidean algorithm. Fundamental theorem of arithmetics. Linear Diophantine equations. Congruence and their properties. Linear congruences, systems of linear congruences, Chinese remainder theorem. Divisibility tests. Willson theorem, Little Fermat theorem, pseudoprime numbers. Euler theorem, the order of the given number for given modulus and its properties. Euler theorem, the order of the given number for given modulus and its properties. Primitive roots and their properties	Course code	Semester		Ľ		-		hours
The main aim of the course is to understand basic terms introduced in elementary number theory, and their relationships, and to prove their properties. During the course, students will be able to learn different proving methods (such as direct and indirect proof, method of mathematical induction, contraposition, etc.). After completing this course, students should demonstrate competency in the following skills: Understand basic elementary number theory terms and apply classical elementary number theory methods; Understand and be able to apply the Euclidean algorithm and its converse; Solve linear Diophantine equations and simple systems of Diophantine equations, as well as polynomial congruences and simple systems of congruences; Understand and apply divisibility tests; Be able to calculate the order of the given number for the given modulus and primitive roots modulo m; Determine whether a given number is quadratic residue or non-residue; Be able to apply achieved knowledge to solve complex tasks from elementary number theory. Course Contrent Divisibility, division algorithm, prime numbers. Greatest common divisor, least common multiple, Euclidean algorithm. Linear Diophantine equations. Congruence and their properties. Linear Diophantine equations. Congruence and their properties. Euler function and its properties. Euler function and its properties. Euler theorem, the order of the given number for given modulus and its properties. Primitive roots and their properties. Legendre symbol, quadratic reciprocity law. ITTRATURE I. Anake, Elementary number theory in nic chapters, Cambridge University	PMAT180	II	Mandatory course		4		· /	
Course Goals number theory, and their relationships, and to prove their properties. During the course, students will be able to learn different proving methods (such as direct and indirect profine theory of mathematical induction, contraposition, etc.). After completing this course, students should demonstrate competency in the following skills: Understand basic elementary number theory terms and apply classical elementary number theory methods; Understand and be able to apply the Euclidean algorithm and its converse; Solve linear Diophantine equations and simple systems of Diophantine equations, as well as polynomial congruences and simple systems of congruences; Understand apply divisibility tests; Be able to calculate the order of the given number for the given modulus and primitive roots modulo m; Determine whether a given number is quadratic residue or non-residue; Be able to apply achieved knowledge to solve complex tasks from elementary number theory. Divisibility, division algorithm, prime numbers. Greatest common divisor, least common multiple, Euclidean algorithm. Fundamental theorem of arithmetics. Linear Congruences, systems of linear congruences, Chinese remainder theorem. Divisibility tests: Euler theorem, the order of the given number for given modulus and its properties. Euler theorem, the order of the given number for given modulus and its properties. Euler theorem, the order of the given number for given numbers. Graatatic residues and their properties, Legendre symbol, quadratic reciprocity law.	Lecturer							
After completing this course, students should demonstrate competency in the following skills: Understand basic elementary number theory terms and apply classical elementary number theory methods; Understand and be able to apply the Euclidean algorithm and its converse; Solve linear Diophantine equations and simple systems of Diophantine equations, as well as polynomial congruences and simple systems of congruences; Understand and apply divisibility tests; Be able to calculate the order of the given number for the given modulus and primitive roots modulo m; Determine whether a given number is quadratic residue or non-residue; Be able to apply achieved knowledge to solve complex tasks from elementary number theory. Determine whether a given number is quadratic residue or non-residue; Be able to apply achieved knowledge to solve complex tasks from elementary number theory. Greatest common divisor, least common multiple, Euclidean algorithm. Fundamental theorem of arithmetics. Linear Diophantine equations. Linear congruences, systems of linear congruences, Chinese remainder theorem. Divisibility tests. Euler function and is properties. Euler function and tis properties. Euler theorem, the order of the given number for given modulus and its properties. Euler theorem, the order of the given number for given modulus and its properties. Primitive roots and their properties. Legendre symbol, quadratic reciprocity law. VIERATURE <td>Course Goals</td><td>number theory students will b</td><td>, and their relations be able to learn di</td><td>hips, and to fferent prov</td><td>prove th ing meth</td><td>eir pro ods (st</td><td>perties. During th uch as direct and</td><td>e course,</td>	Course Goals	number theory students will b	, and their relations be able to learn di	hips, and to fferent prov	prove th ing meth	eir pro ods (st	perties. During th uch as direct and	e course,
COURSE CONTENT - Divisibility, division algorithm, prime numbers. - Greatest common divisor, least common multiple, Euclidean algorithm. - Fundamental theorem of arithmetics. - Linear Diophantine equations. - Congruence and their properties. - Linear congruences, systems of linear congruences, Chinese remainder theorem. - Divisibility tests. - Willson theorem, Little Fermat theorem, pseudoprime numbers. - Euler function and its properties. - Euler theorem, the order of the given number for given modulus and its properties. - Primitive roots and their properties. - Quadratic residues and their properties, Legendre symbol, quadratic reciprocity law. II K. H. Rosen, Elementary number theory and its applications, 5th ed., Pearson Addison Wesley, 2005. [2] J. J. Tattersall, Elementary number theory in nine chapters, Cambridge University Press, 2001. [3] H. Jamak, Elementarna teorija brojeva, Grafičarpromet, Sarajevo, 2013. [4] J-M. De Koninck, A. Mercier,1001 problems in classical number theory, AMS, Providence, RI, 2007. STUDENT WORKLOAD (hours in a semester) Lectures 30 Exercises	0	After completi skills: - Under elementary - Under - Solve equations, - Under - Be abl primitive r - Deterr - Be abl	ing this course, stud estand basic elem y number theory more stand and be able to linear Diophantin , as well as polynom estand and apply div le to calculate the of roots modulo m; mine whether a give le to apply achieve	lents should entary num ethods; apply the E e equations ial congruen isibility tests; order of the n number is	demonst ber theo cuclidean s and si ces and si given nu quadratic	rate co ory te algorith imple imple s mber f c residu	empetency in the s rms and apply hm and its conver systems of Dic systems of congrue for the given mod	classical rse; pphantine ences; lulus and
 Divisibility, division algorithm, prime numbers. Greatest common divisor, least common multiple, Euclidean algorithm. Fundamental theorem of arithmetics. Linear Diophantine equations. Congruence and their properties. Linear congruences, systems of linear congruences, Chinese remainder theorem. Divisibility tests. Willson theorem, Little Fermat theorem, pseudoprime numbers. Euler function and its properties. Euler theorem, the order of the given number for given modulus and its properties. Primitive roots and their properties. Quadratic residues and their properties, Legendre symbol, quadratic reciprocity law. LITERATURE [1] K. H. Rosen, Elementary number theory and its applications, 5th ed., Pearson Addison Wesley, 2005. [2] J. J. Tattersall, Elementary number theory and its applications, 5th ed., Pearson Addison Wesley, 2005. [3] H. Jamak, Elementara teorija brojeva, Grafičarpromet, Sarajevo, 2013. [4] J-M. De Koninck, A. Mercier,1001 problems in classical number theory, AMS, Providence, RI, 2007. STUDENT WORKLOAD (hours in a semester) Lectures 30 Exercises 30 Individual work 40 T o t a 1 100 GRADING REMARKS 		number th			1			
 Greatest common divisor, least common multiple, Euclidean algorithm. Fundamental theorem of arithmetics. Linear Diophantine equations. Congruence and their properties. Linear congruences, systems of linear congruences, Chinese remainder theorem. Divisibility tests. Willson theorem, Little Fermat theorem, pseudoprime numbers. Euler function and its properties. Euler theorem, the order of the given number for given modulus and its properties. Primitive roots and their properties. Quadratic residues and their properties. Quadratic residues and their properties. LITERATURE K. H. Rosen, Elementary number theory and its applications, 5th ed., Pearson Addison Wesley, 2005. J. J. Tattersall, Elementary number theory in nine chapters, Cambridge University Press, 2001. J. J. Tattersall, Elementara teorija brojeva, Grafičarpromet, Sarajevo, 2013. H. Jamak, Elementarna teorija brojeva, Grafičarpromet, Sarajevo, 2013. JM. De Koninck, A. Mercier,1001 problems in classical number theory, AMS, Providence, RI, 2007. Etetures 30 Exercises 30 Individual work 40 To t a 1 100 Gratestore Stude Minimum m points points 				CONTENT				
STUDENT WORKLOAD (hours in a semester) Lectures 30 Exercises 30 Individual work 40 T o t a l 100 GRADING Maximu Minimum points Maximu m points Minimum points	 Greatest comm Fundamental th Linear Diophar Congruence an Linear congrue Divisibility test Willson theorem Euler function Euler theorem, Primitive roots Quadratic resid [1] K. H. Rosen, E [2] J. J. Tattersall, I [3] H. Jamak, Elem 	non divisor, least heorem of arithm ntine equations. Id their propertie ences, systems of s. m, Little Fermat and its propertie the order of the and their prope lues and their prope lues and their prope lues and their prope	t common multiple, metics. es. f linear congruences t theorem, pseudopres. e given number for es. e given number for rrties. toperties, Legendre <u>LITER</u> ber theory and its ap aber theory in nine of brojeva, Grafičarpre	, Chinese rer ime numbers given modult symbol, quad ATURE pplications, 5 chapters, Can omet, Sarajev	mainder the s. us and its lratic recint the d., Pennbridge U vo, 2013.	prope procity earson . Jnivers	rties. 7 law. Addison Wesley, 2 ity Press, 2001.	
Lectures30Exercises30Individual work40T o t a l100GRADINGCriterionMaximu m pointsMinimum pointsEMARKS						AMS,	Providence, RI, 2	007.
GRADING REMARKS Criterion Maximu Minimum m points m points points		STUD	DENT WORKLOA	D (hours in	n a seme	ster)		
Criterion Maximu Minimum m points points	Lectures	30 Exercis	es <u>30</u>	Individua	l work	40	Total	100
Criterion Maximu Minimum m points points		GRADING				REM	IARKS	
	Criterion	Maxim						
	Midterm exams							

Final exam		
Total	100	55