Program	Level	Third o	Third cycle				
i iograini	Name of the program		SEE D	SEE Doctoral Studies in Mathematical Science			
COURSE							
Course title	Spectral theory of automorphic forms						
Course code	Semester	Course sta	atus		ECTS	Contact hours	
PMAT 665	II	Elective course			10	30	
Lecturer Prof. Dr. Lejla Smajlović							
	The main goal of the course is to introduce basic aspects of spectral theory of automorphic						
	forms on Fuchsian groups. To be precise, the goal is to describe spectral expansion of the						
	space of cusp forms and the space of incomplete Eisenstein series and then to derive the						
Course Goals	the trace formula we will introduce the Selberg zeta function and describe its basic						
	properties. As an application of the methods introduced, we will derive the Wevl law for the						
	distribution of	eigenvalues	of the Lap	acian on r	on-compact	Riemannian surfaces of finite	
volume.							
COURSE CONTENT							
- Harmonic analysis on hyperbolic plane: hyperbolic coordinates, classification of isometries,							
eigenfunctions of the Laplace operator, invariant integral operators, Selberg/Harish-Chandra							
transform.							
- Fuchsian groups: definition of a Fuchsian group and its fundamental domain, classification of							
elements of Fuchsian groups, classification of Fuchsian groups, some special arithmetic							
Fuchsian groups.							
- Automorphic forms: definition, definition of a cusp form and Eisenstein series, Kloosterman							
sums and Fourier expansion of Eisenstein series.							
- Green's function on the upper half-plane and spectral expansion of the space of cusp forms							
(as Δ -invariant subspaces).							
- Automorpric Green function and analytic continuation of Eisenstein series.							
- Functional equation, poles and residues of Eisenstein series.							
- Spectral expansion of the space of incomplete Eisenstein series (as Δ - invariant subspaces).							
- The Selberg trace formula.							
- The Selberg zeta function, its basic properties and functional equation.							
- The Weyl law							
LITERATURE							
[1] H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Vol. 53, American							
Mathematical Society, 2002.							
[2] H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS Colloquium Publications, Vol. 53, American							
Walnematical Society, 2004. [3] D. A. Heibal. The Salberg Trace formula for DSL (2. R). Vol. I. Locture Notes in Mathematica 549. Springer							
Verlag 1976							
[4] D. A. Heihal. The Selberg Trace formula for PSL(2.R). Vol. II. Lecture Notes in Mathematics 1001. Springer							
Verlag, 1983.							
[5] J. Fischer, An Approach to the Selberg Trace Formula via the Selberg Zeta Function, Lecture Notes in							
Mathematics 1253, Springer Verlag, 1987							
GRADING					RE	EMARKS	
Criterion	Maxin	num M	linimum				
TT 1	points	po	oints				
Homework	20	11	1				
Project	40	22	2				
Final exam	40	22	2				
Total	100	55	5				