D	Level	Level		nd cycle				
Program	Name of	f the program	Theor	heoretical Computer Science				
COURSE								
Course title Metaheuristics								
Course code	Semester	er Course status			ECTS	(Contact hours (L-	⊦AE+LE)
CS 533	III	Elective course			7		3+0+2	2
Lecturer								
Course Goals	The primary goal of this course is to introduce students to the basics of the theory of metaheuristic algorithms and apply them to solving challenging NP-complete problems.							
Learning At the end of this course, the students should acquire basic knowledge about metaheuristics								
Outcomes and be able to apply them in solving complex combinatorial or continual problems.								
COURSE CONTENT								
- Introduction. General about optimization problems.								
- Stochastic optimization. Random and pseudo-random numbers.								
- Random processes and random walks. Levy flights and a simplified version of Levy distribution.								
- Marks chains. Metropolis-Hasting Algorithm (MHA). Ghate-Smith Markov optimization algorithm.								
- Continuous and combinatorial optimization problems.								
- Overview of heuristic algorithms. The division of heuristic algorithms. The determination of the best first								
(Best-first search).								
- Hill Climbing algorithm Iterated Greedy algorithm The Greedy Randomized Adaptive Search Procedure								
(GRASP) Guided Local Search (GLS) Simulated Annealing (SA) algorithm Quantum Annealing (QA)								
algorithm. Variable Depth Search (VDS) Extreme Optimization (EO)								
- Nature-inspired algorithms Genetic Algorithms (GA) Differential Evolution (DE) Bacteriological								
algorithms Memetic Algorithm (MA) Scatter Search (SS) methods								
- An overview of metabeuristic algorithms that are not naturally inspired. Monte-Carlo method. Local search								
(LS). Multiple local searches. Variable Neighborhood Search (VNS) strategies.								
- Swarm intelligence algorithms. Particle Swarm Optimization (PSO). Harmony Search (HS). Tabu Search								
(TS). Ant Colony Optimization (ACO). Bee Colony Optimization (BCO). Firefly Algorithm (FA). Cuckoo								
Search (CS) Algorithm. Bat Algorithm (BA)								
LITERATURE								
[1] Osman I. H., Kelly J.P.: Metaheuristics: Theory and Applications, (1996), Kluwer Academic Publishers.								
[2] Ribeirio C.C., Hansen P.: Essays and survays in Metaheuristics, (2002), Kluwer Academic Publishers Boston								
- Dordrecht - London.								
[3] X.S Yang.: Nature-Inspired Metaheuristic Algorithms. 2nd edition, (2010), Luniver Press.								
[4] Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, (2004), Springer.								
[5] Talbi, E.G: Metaheuristics-from design to implementation, (2009), Wiley & Sons Publications.								
STUDENT WORKLOAD (hours in a semester)								
Lectures	45 I	Exercises	30	Individual	l work	100	Total	175
	ING			REMARKS				
Cristonian	1	Maximum	Minimum					
Cinterion		points	points					
Midterm exams		20	10					
Assignments		10	5					
Projects		30	15					
Seminar paper		10	5]				
Final exam		30	20					
Total		100	55					