Drogram	ram				d cycle				
Program	Name of the program Theore			etical Computer Science					
			COUR	SE					
Course title			Com	putational	Geometry				
Course code	Semester	Course sta			ECTS	Contact (L+AE+LE)	hours		
CS 440	Ι	Mandatory course			7	3+0+2			
Lecturer									
Course Goals	This course aims to introduce the students to advanced geometric algorithms and their applications in solving complex geometric problems.								
Learning	At the end of this course, a student should rule with advanced geometric techniques								
Outcomes	from computational geometry.								
and its original	properties and d	of the 3D C lefinitions.	Convex H			n weight triangulatio			
	ed algorithms o SP) and their cor		for deter	rmination o	of minimum	weight triangulation	on. Binary		
	,		BD space.	Applicatio	on of BSP o	on the scene. Algor	rithms for		
0	ible surfaces usir		- space	PProduce					
- The properties and characteristics of the Voronoi diagram and Delaunay triangulation. The data									
	structures for computing the Voronoi diagram and its dual. The determining of the Voronoi Diagram by								
	using Fortune's algorithm. The application of the Flip-edge algorithm to find Delaunay triangulation. The								
	connection between Delaunay triangulation and Voronoi diagram.								
- The movement of a robot. Medial axes. Sum of Minkowski. Convolution of the curves. The convergence									
of curves. CRUST algorithm for reconstruction of curves based on usage: Voronoi diagram, Delaunay									
	nd the medial ax				U	0,	,		
0			s. Gauss-I	Bonnet theo	orem and Ca	uchy's rigidity theor	em.		
-		· ·				gorithm for dividing			
a plane.									
	a network and								
 Visibility graph 	s and their calcu				aths while m	oving robots in spa	ce.		
			JTERA'						
	•	Aichael lan	Shamos,	Computati	onal geome	etry, An Introducio	n, (1985),		
	Springer Verlag.								
[2] 2. Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Schwarzkopf, Computational Geometry, Algorithms and Applications, 3rd edition, (2008), Springer Verlag.									
 [3] 3. Satyan L. Devadoss, Joseph O' Rourke, Discrete and Computational Geometry, (2011), Princeton 									
University					mputational	2011),	1 111001011		
		ph O'Rourk	e. Handh	book of Dis	screte and C	Computational Geor	netry, 2nd		
	C Press, 2004.	r 0 1.00011	.,				<i>j</i> , - iia		
		ENT WOR	RKLOAI) (hours in	a semester	:)			
Lectures	45 Exerci		30	Individual		00 Total	175		
	GRADING				R	EMARKS			
	Maxim	um Mi	nimum						
Criterion	points		ints						
Midterm exams	30	16							
Projects	40	22							
Final exam	30	17							

T o t a l 100 55	
------------------	--