

Program
Level Second cycle
Name of the program Theoretical Computer Science

COURSE
Course title System Programming and System Software
Course code Semester Course status ECTS Contact hours (L+AE+LE)
CS420 I Mandatory course 7 3+0+2
Lecturer

Course Goals
The aim of the course is to introduce students with many common procedural languages, as
well as representational functional, logic-oriented and object-oriented languages.

Learning
Outcomes

Upon successful completion of this course, students are expected to be able to:
- identify and explain the functions of primary CPU components such as registers, ALU,

control unit, memory, input-output devices and typical microprocessor instructions.
- demonstrate the ability to write simple programs in assembly language
- explain the process of translating programs from high-level languages to low-level

languages
- understand the code generation and optimization process in the production of low-level

programming code
COURSE CONTENT

A programmer's view of processor organization. Concept of memory and memory addresses. Registries.
Program counter. Intel IA-32 architecture processor instructions. Addressing data at the system level: Approach
data in the registers. Constants. Direct and indirect addressing. Index addressing. Access data across the stack.
Linear memory and its alternatives (segments, pages). Machine code and its generation: Assembly and binary
representation of instructions. Data transfer instructions. Instructions for arithmetic and logical operations.
Unconditional jump instructions. Conditional jumps. Stack. Subroutines. Shifting and rotating. Floating point.
Input and output: Memory and I/O mapped input and output. Principle of operation of keyboard, disk, screen,
communication devices at low level and API level of operating systems. Interrupts/events and their service
routines: Interrupt table. Hardware interfaces. Software traps. Processor exceptions. Data storage during service
routine processing. The most important routines. Compilers. A simple compiler. Representation of syntax
diagrams by syntax procedures. Code generation: memory, stack, global variables, dynamic and static data, code
generation from the compiler. Realization of expressions, operators, procedures, local and global variables,
program structures. Builders, linkers: Principle of linker operation. Make bilder. Assembly principle, one-pass
and two-pass. Execution environment: Loaders, executable file format, role of registers, system functions, static
and dynamic libraries. Virtual machines. Concurrency control techniques: Parallel execution, threads,
semaphores, mutual exclusion, Performance evaluation and optimization: Profilers. Benchmark programs.
Evaluation of algorithms

LITERATURE
[1] S. Ribić, Skripta sa tekstom predavanja dostupna na web stranici i u štampanom obliku
[2] IA-32 Software developers manual, Intel corporation
[3] Paul A. Carter: PC Assembly Language (www.drpaulcarter.com/pcasm/)
[4] R.E. Bryant and D. R. O'Hallaron: Computer Systems: A Programmer's Perspective, Prentice Hall, 2003,.
[5] Andrew S. Tanenbaum: Structured Computer Organization, 4th ed., Prentice Hall, 1999

STUDENT WORKLOAD (hours in a semester)
Lectures 45 Tutorial 30 Individual work 100 T o t a l 175

GRADING REMARKS

Criterion Maximum
points

Minimum
points

2x20 points written tests, remaining 10 points are earned
for work during the semester. 5 homeworks worth 2
points each. Midterm exams 40 20

Homework assigments 10

Final exam 40 10

T o t a l 100 55

