

Program Level First cycle
Name of the program Theoretical Computer Science

COURSE
Course title Compilers
Course code Semester Course status ECTS Contact hours (L+AE+LE)
CS345 V Elective course 4 2+0+2
Lecturer

Course Goals The aim of the course is to introduce students with many common procedural languages, as
well as representational functional, logic-oriented and object-oriented languages.

Learning
Outcomes

Upon successful completion of this course, students are expected to:
- get acquainted with many common procedural languages, as well as representational

functional, logic-oriented and object-oriented languages,
- understand the components and features of programming languages needed for program

development and maintenance of various applications,
- study the phases and components of typical programming language translators,
- study relevant language theory and understand its use in translation,
- to design, develop and test large software projects, using multiple software tools, resulting

in a programming language interpreter.
COURSE CONTENT

- Low-level programming, evolution of major programming languages
- Description of syntax and semantics
- Lexical analysis, syntax analysis
- Names and associations, scope, lifetime, environments
- Primitive data types, fields, other types and type checking
- Arithmetic expressions, Boolean expressions, assignments, mixing and equivalence of types
- Imperative programming and structured programming, Control commands: selection, iteration, branching
- Subroutines and parameter passing, problems that happen with subroutines, implementation of

subroutines, implementation of nested subroutines, blocks
- Abstract data types and encapsulation
- Object-oriented programming, examples of object-oriented languages
- Exceptions, event-driven programming, and concurrency

LITERATURE
[1] Keith Cooper and Linda Torczon, Engineering a Compiler, Morgan Kaufman, 2011
[2] Robert Sebesta, Concepts of Programming Languages, Pearson; 10 edition (January 16, 2012)
[3] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles, Techniques, and Tools
(Second Edition) Addison-Wesley
[4] Andrew Appel and Jens Palsberg, Modern Compiler Implementation in C (Second Edition), Cambridge
University Press

STUDENT WORKLOAD (hours in a semester)
Lectures 30 Tutorial 30 Individual work 40 T o t a l 100

GRADING REMARKS

Criterion Maximum
points

Minimum
points

2x20 points written tests, remaining 10 points are earned
for work during the semester. 5 homeworks worth 2
points each. Midterm exams 40 20

Seminar 20
Final exam 40 10
T o t a l 100 55

