Program	Level		First cycle									
	Name of the p	rogram	Theoretical Computer Science									
COURSE												
Course title	Analysis and Synthesis of Algorithms											
Course code	Semester	Course status		ECTS	Contact	hours						
					(L+AE+LE)							
CS 310	V	Mandatory cou	ırse	6	3+0+2							
Lecturer												
Course Goals	This course investigates methods for designing efficient and reliable algorithms. It introduces several algorithm design strategies that build on data structures and programming techniques. These include induction, divide-and-conquer, dynamic programming, and greedy algorithms.											
Learning Outcomes	After completing this course the student must demonstrate the knowledge and ability to: - Use advanced mathematical methods to analyze and synthesize algorithms; - Understand standard advanced algorithmic techniques; - Understand classical algorithm design techniques; - Understand the randomization in solving hard computational problems;											

COURSE CONTENT

- Advanced algorithm analysis techniques;
- Analysis of iterative and recursive algorithms. O and Θ notations.
- Analysis of algorithms and recurrence relations. Master theorem.
- Proof of Algorithm Correctness by induction and loop invariant
- Some Techniques for Recursion Removal. Memoization
- Algorithm synthesis techniques
- Algorithmic Strategies: Brute-force algorithms, divide and conquer, greedy algorithms, dynamic programming, and transformations, recursive backtracking, branch and bound.
- Randomized algorithm. Monte Carlo and Las Vegas algorithms.
- Selection (deterministic &randomized): finding the median in linear time
- String Matching Algorithms (Knuth-Morris-Pratt, Rabin-Karp, Boyer-Moore).
- String Matching with Finite Automata
- Algebraic algorithms; integer and matrix multiplication.
- Fast-Fourier transform and applications;

LITERATURE

- [1] Levitin, Anany. Introduction to the design and analysis of Algorithms, 3rd ed, Pearson, 2011
- [2] Steven S. Skiena, The Algorithm Design Manual, Springer, 2008
- [3] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Algorithms, S. Dasgupta, 2006
- [4] J. Kleinberg, E. Tardos, Algorithm Design, Pearson, 2006
- [5] G. J. E. Rawlins: Compared to what? An introduction to the analysis of algorithms, Computer Science Press, 1992.
- [6] T. H. Cormen, C. E. Leiseron, R. L. Rivest & C. Stein, Introduction to Algorithms, MIT Press, 2009.
- [7] D. E. Knuth, The Art of Computer Programming, Volume 1-3: Fundamental Algorithms, Addison-Wesley, 1968.

STUDENT WORKLOAD (hours in a semester)										
Lectures	45	Exercises	30	Individual work	75	Total	150			
GRADING				REMARKS						
Criterion		Maximum	Minimum							
		points	points							
Midterm exams		45	22							
Projects		10								
Final exam		45	22							
Total		100	55							