Duo oue ee	Level		First cycle										
Program	Name of the p	rogram	Theoretical Co	mputer Scienc	e								
	•		COURSE										
Course title]	Data Structures	and Algorithn	ns								
Course code	Semester	Course status		ECTS	Contact hours (L+AE+LE)								
CS 210	III	Mandatory	course/Elective	7	3+2+2								
		course											
Lecturer													
	This course in	troduces some	basic data struct	ures (arrays, li	nked lists, stacks, queues, trees								
Course Goals	and heaps) an	d algorithms (various sorting a	lgorithms, and	l algorithms for operations on								
	binary search to	rees and heaps)											
	Upon successf	ul completion o	of this course, stu	dent should be	able to:								
	- define bas	ic static and d	ynamic data stru	ctures and rele	evant standard algorithms for								
T	them: stack	k, queue, dynar	mic linked lists, tr	ees, graphs, he	eap, priority queue, hash tables,								
Learning Outcomes	sorting algorithms, min-max algorithm,												
Outcomes	- demonstra	te advantages a	ınd disadvantages	of specific algo	orithms and data structures,								
	- select base	ic data structi	ures and algorith	nms for autor	nomous realization of simple								
		or program par	_		•								

COURSE CONTENT

- Introduction to Algorithms, Algorithm analysis, Complexity of an algorithm. Asymptotic notations;
- Classical sequential sorting algorithms (bubble sort, selection sort, insertion sort, shell sort, quick sort, radix sort, external sort)
- Searching algorithms (sequential search, binary search, binary tree search, external search, interpolation search, Fibonacci search);
- Divide-and-conquer
- The concept of data structure. Types of data structures. Linear and branched data structures.
- Linear data structures. Arrays and Linked List. Stacks and Queues. Implementation. Singly Linked and Doubly-linked lists; Static and Dynamic Implementation;
- Branched data structures. Three. Binary Search Trees. Static and Dynamic Implementation; Application of trees;
- Heaps. Heap sort. Hash tables and hashing;
- Graphs and graph algorithms, Breadth First Search (BFS), Depth First Search (DFS),
- Shortest-path algorithms (Dijkstra's and Floyd's algorithms)
- Minimum spanning tree (Prim's and Kruskal's algorithms)
- Ford-Fulkerson Algorithm for Maximum Flow and Applications

LITERATURE

- [1] Notes and slides from lectures
- [2] T. H. Cormen, C. E. Leiseron, R. L. Rivest & C. Stein, Introduction to Algorithms, MIT Press, 2009.
- [3] Robert Sedgewick and Kevin Wayne, Algorithms, 4th Edition, Addison Wesley Publishing, 2011.
- [4] A. Drozdek, Data Structures and Algorithms in C++, Course Technology; 3 edition, 2004
- [5] M. Živanović, Algoritmi, Matematički fakultet, Beograd, 2000.
- [6] Milo Tomašević, Algoritmi i strukture podataka, Akademska misao, Beograd, 2008.
- [7] V. Aho, J. E. Hopcroft, J. D. Ulman: Data Structures and Algorithms, Addison-Wesley, 1983.
- [8] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, Addison-Wesley, 1968.

		STUDENT	WORKLO	AD (hours in a sen	nester)		
Lectures	45	Exercises	60	Individual work	70	Total	175
	GRA	DING	-		REM	ARKS	
Criterion		Maximum	Minimum				

	points	points
Midterm exams	30	15
Projects and homeworks	20	10
Final exam	50	25
Total	100	55