Program	Level		First cycle								
	Name of the program		Theoretical Computer Science, Mathematics and Informatics Education								
COURSE											
Course title	Graph Theory										
Course code	Semester	Course status	3	ECTS	Contact	hours					
					(L+AE+LE)						
AMAT 380	VI	Mandatory course		6	3+2+0						
Lecturer											
Course Goals	The objectives of the module are familiarization with the basic elements of graph theory										
	and its applications. One of the most important goals is to show how to model problems										
	using graphs and how to solve them or at least define the appropriate problem.										
Learning Outcomes	Upon completion of the module, students will be able to model real-world problems										
	with the mathematical apparatus of graph theory and apply classical graph algorithms for										
	those types of problems for which effective solutions are known										

COURSE CONTENT

- -Basic terms and definitions, graph as a model
- Isomorphisms, special graphs and graph decompositions
- Connectivity, Bipartite Graphs, Euler Graphs, Interval Graphs, Node Degrees and Graph Counting
- Oriented graphs and corresponding models
- Basic features of the tree, distance in the trees, tree counting
- Matching and coverings, matching on bipartite graphs
- Matching on graphs (Tutte theorem)
- Connectivity (2 and 3 connectivity)
- Menger's theorems and connectivity
- Graph colouring, Chromatic polynomials
- Perfect graphs, Triangular graphs
- Planarity, Planarity and Kuratowski's theorem
- Hamilton cycle
- Basic graph search algorithms

LITERATURE

- [1] Bela Bollobas, Modern Graph Theory, Springer-Verlag, 1998
- [2] D. West, Introduction to Graph Theory, Prentice Hall, Pearson; 2 ed., 2000.
- [3] Jonathan Gross, Jay Yellen Graph theory and its applications, Chapman and Hall; 2 ed., 2005.
- [4] Gary Chartrand, Introductory graph theory Dover Publications, 1984

STUDENT WORKLOAD (hours in a semester)										
Lectures	45	Exercises	30	Individual work	75	Total	150			
	GRA	DING		REMARKS						
Criterion		Maximum Minimum points points								
Midterm exams		40 20								
Projects		20 10 40 20								
Final exam										
Total		100	55							