Program	Level			First cycle			
	Name of the program			Applied Mathematics, Theoretical Computer Science			
COURSE							
Course title	Integer Programming						
Course code	Semester		Course status	ECTS		$\begin{aligned} & \text { ontact } \\ & +\mathrm{AE}+\mathrm{LE}) \end{aligned}$	hours
AMAT 365	VI \quad Elective course			5		$2+0$	
Lecturer							
Course Goals	The main objects considered in Integer programming are problems that can be modelled with linear programs such that some or all variables are required to be integer variables. The main goal of the course is to enable students to learn some concepts and techniques used in integer programming. Special attention is devoted to classical network problems: flow, matching, and assignment problems, as well as to general methods for solving integer programs such as branch and bound and cutting plane methods.						
Learning Outcomes	After completing this course, students should demonstrate competency in the following skills: - Understand basic terms used in Integer programming; - Be able to model some real problems as integer programs; - Understand concepts used to develop methods for solving some integer programs; - Be able to formulate and solve some classical network problems such as shortest path, maximal flow, matching, etc; - Be able to solve integer programs using branch and bound and cutting plane methods.						
COURSE CONTENT							
- Integer program models. - Optimality, relaxation, bounds. - Totally-unimodular matrices. - Shortest path problem. - Maximal flow problems. - Matching problems. - Assignment problem. - Branch and bound method. - Cutting plane algorithm.							
LITERATURE							
[1] L. A. Wolsey: Integer Programming, John Wiley \& Sons, New York, 1998. [2] F.S.Hiller, G.J Lieberman: Introduction to Operations Research (9th ed.), McGraw-Hill, 2009. [3] M. Bazaraa, J. Jarvis, H. Sherali: Linear Programming and Network Flows (4th edition), Wiley, New Jersey, 2009. [4] T. Sottinen: Operations Research, 2009.							
STUDENT WORKLOAD (hours in a semester)							
Lectures	30 Ex	Exercises	30	Individual work	65	Total	125
GRADING				REMARKS			
Criterion		Maximum points	Minimum points				
Midterm exam		45	22				
Project		10					
Final exam		45	22				
Total		100	55				

