	T 1		TP' 1									
Program	Level		First cycle									
	Name of the program		Applied Mathematics									
COURSE												
Course title	Numerical Analysis											
Course code	Semester	Course status		ECTS	Contact	hours						
					(L+AE+LE)							
AMAT 280	IV	Mandatory cou	ırse	5	2+0+2							
Lecturer												
Course Goals	Goal of this course is to teach a student to analyze a problem of numerical nature and to											
	apply methods studied during semester.											
Learning	After finishing this course succesfully, student will be able to apply everything containing											
Outcomes	the content od this course.											
COLIDSE CONTENT												

COURSE CONTENT

- Solving systems of linear equations. Eigenvalue methods. QR algorithm. SVD method.
- Splines. Splines of first and second order. Natural cubic splines.
- Random numbers and their generation.
- Ordinary differential equations. Method of Taylor series. Runge-Kutta method.
- Least squares method.
- Numercal integration.
- Linear programming.

LITERATURE

- [1] [2] W. Cheney, D. Kincaid, Numerical mathematics and computing, Thomson Brooks/Cole, 2004.
- R. I. Burden, I. D. Faires, Numerical analysis, Pacific Grove, California: Brooks/Cole, 2001

[2] R. L. Burden, J. D. Faires, Numerical analysis, Pacific Grove, California: brooks/Cole, 2001.											
STUDENT WORKLOAD (hours in semester)											
Lectures	30	Exercises	30	Individual work	65	Total	125				
GRADING				REMARKS							
Criterion		Maximum	Minimum								
		points	points								
Midterm exams		80	45								
Final exam		20	10								
Total		100	55								