Program	Level \quad First cycle						
	Name of the program			Applied Mathematics, Pure Mathematics			
COURSE							
Course title	Partial Differential Equations						
Course code	Semester		Course status		ECTS	Contact hours (L+AE+LE)	
AMAT 270	I \quad Mandatory course				5	$3+2+0$	
Lecturer							
Course Goals	This course aims to teach the basics of first-order Partial differential equations (PDEs). PDEs are essential subjects in many branches of pure mathematics, applied mathematics, physics, and applied science.						
Learning Outcomes	After completing the module, the student will be able to: - solve linear, quasi-linear and nonlinear first-order PDEs - understand how to solve Cauchy problem - solve Pfaff's equation						
COURSE CONTENT							
First-order PDE. Lenar PDEs. Quasi-linear PDEs. Cauchy problem. Pfaff's equations. Nonlinear First - order PDEs. The Lagrange-Charpite Method. Method of characteristics.							
LITERATURE							
[1] I. Aganović, K. Veselić, Linearne diferencijalne jednadžbe, Element, Zagreb, 1997. [2] G. B. Folland, Introduction to partial differential equations, Princeton University Press, 1995. [3] F. John, Partial differential equations, Springer Verlag, 1982. [4] S. Kalabušić, N. Memić, E. Pilav, Parcijalne diferencijalne jednačine, PMF, Sarajevo, 2015 [5] K. Yosida, Lectures on Differential and Integral Equations, New York, 1991							
STUDENT WORKLOAD (hours in a semester)							
Lectures	45	Tutorial	30			Total	125
GRADING				REMARKS			
Criterion		Maximum points	Minimum points	Midterm exam: only once in semester (end of November or first week of December). Students altogether write 120 minutes long test. This test is evaluated by max 50 points. The minimal score of the test is 25 points. Final exam: Students who do not reach the midterm exam minimal score must take the entire course in the final exam. In this case, the final exam is evaluated by $\max 100$ points. The final exam's minimal score is 55 points. Students who reach the midterm exam minimal score take only the part of the final exam that is not covered by the midterm test. In this case, the final exam is evaluated by max 50 points. The minimal score is 30 points.			
Midterm exams		50	25				
Homework assi	nment	-	-				
Project		-	-				
Laboratory assig	nments	-	-				
Final exam		50	30				
Total		100	55				

