Name of the program Science COURSE: Course file Numerical methods for solving linear and nonlinear eigenvalues problems Coarse code Semester Course status ECTS Contact hours (L+AE+L) AMAT 625 I Elective course 10 50 Lacturer Prof. dr Aleksandra Konić Each mechanical system has a vibrating property. The analog phonomon also encounters elective systems in the form of oscillating electric ercuits. Vibration conditions are mathematically described in form of differential equation systems or differential equations. This leads to problems of eigenvalues, which is currently very actual. Course Goals Each mechanical system of eigenvalues have been arise of a improtunt place in numeric and applied mathema The goal is to adopt the attenders of eigenvalues, which is currently very actual. COURSE CONTENT • Method of Kolov, Method of Danilevski • Method of rateropolation, Method of Le Verierra. • • Method of rateropolation, Method of Danilevski • • Jacobi method • • • Method of rateropolation, Method of them. As an example, we take Toeplitz matrix and suitable methods. • • Method of rateropolation problems of eigenvalues. • • <	Program		Level			Third cycle			
Course fulle Numerical methods for solving linear and nonlinear eigenvalues problems Course code Semester Course status IZCTS Contact hours (L+AE+L) AMAT 625 I Flective course 10 30 Lecturer Prof. dr Aleksandra Kostić Semester 30 Course Goals Each mechanical system has a vibrating property. The analog phenomenon also encounters elect systems in the form of oscillating electric erreuits. Vibration conditions are mathermatically desembed in form of differential equations. This leads to problems of eigenvalues. The goal is to adopt the attenders of a important place in numeric and applied mathema The goal is to adopt the attenders of eigenvalues, which is currently very actual. COURSE CONTENT ************************************			Name of the program			SEE Doctoral Studies in Mathematica Science			
Course code Semester Course status FCTS Contract hours (L+ATE+L) AMAT 625 1 Elective course 10 30 Lecturer Prof. dr Aleksandra Kostić 30 30 Lecturer Prof. dr Aleksandra Kostić 30 30 Course Goals Each mechanical system has a vibrating property. The analog phenomenon also encounters elect systems in the form of oscillating electric circuits. Vibration conditions are mathematically described in from of differential equations. This leads to problems of eigenvalues. The goal is to adopt the attenders or exposition of methods and to operate scientific-research we especially in the nonlinear problems of eigenvalues, which is currently very actual. COURSE CONTENT • • Method of Kalos, Method of Danilevski • Gives method • • Method of factory Neutrod • • Method of scilar product • • Method for nonlinear problems of eigenvalues. • • Examples from physics and technices <	COU	RSE							
MAXT 625 I Flective course 10 50 Lecturer Prof. dt Alcksandra Kostić	Cours	se title	Nume	rical methods for solving li	near and r	onlinear eiger	walues probl	ems	
Lecturer Prof. dt Aleksandra Kostić Course Goals Fach mechanical system has a vibrating property. The analog phenomenon also encounters electives vibration conditions are mathematically described in form of differential equations systems or differential equations. This leads to problems of eigenvalues. I to the problem of eigenvalues have been arise of a important place in numeric and applied mathematically described in the problem of eigenvalues of exposition of methods and to operate scientific research w especially in the nonlinear problems of eigenvalues, which is currently very actual. COURSE CONTENT Method of Danilevski Gives method of foration Gives method Horbod of interpolation, Method of Le Verierra Gives method Horbod of fration Gives method Jacobi method Gives method Horbod of scalar product Method of arbitrary vector Method of resting Gieneralized problem of eigenvalues Structured matrices and methods for them. As an example, we take Toeplitz matrix and suitable methods. Examples from physics and technics Linearization Wirinax characterization Generalized problem of eigenvalues: Linearization Linearization Wirings of silvester low of inertia Especially quadratic and rational problems of eigenvalues. Examples from physics and technics Especially qua	Course code		Semester	Course status H	ECTS		Contact hou	urs (L+AE+LE)	
Each mechanical system has a vibrating property. The analog phenomenon also encounters electry systems in the form of oscillating electric circuits. Vibration conditions are mathematically described in form of differential equations or differential equations. This leads to problems of eigenvalues. It the problem of eigenvalues have been arise of a important place in numeric and applied mathema The goal is to adopt the attenders of exposition of methods and to operate scientific-research we especially in the nonlinear problems of eigenvalues, which is currently very actual. COURSE CONTENT Methods for linear problem of eigenvalues: Method of Krilov, Method of La Verierra Method of Arilov, Method of Danilevski Gives method Houscholdker method I.R method Wethod of scalar product Method of scalar product Method of eshausting Generalized problem of eigenvalues: Examples from physics and technics Method of eshausting Generalized problem of eigenvalues: Linearization Minimax characterization Winnimax characterization Wisser from physics and technics Linearization Minimum 2003. 21 Desanka P. Radunović , Numeričke metode, akademska misao, Beograd 2003. 22 Projects 50	AMAT 625		Ι	Elective course 1	10		30		
Systems in the form of oscillating electric circuits. Vibration conditions are mathematically described in to form of differential equations. This leads to problems of eigenvalues. It be problem of eigenvalues have been arise of a important place in numeric and applied mathema The goal is to adopt the attenders of exposition of methods and to operate scientific-research we especially in the nonlinear problems of eigenvalues, which is currently very actual. COURSE CONTENT • Methods for linear problem of eigenvalues: • Method of interpolation, Method of Le Verierra • Method of Krikov, Method of Danilevski • Gives method • Jacobi method • Jacobi method • Houscholder method • Houscholder method • Rethod of arbitrary vector • Method of trace • Method of trace • Method of trace • Method for trace • Method for trace • Method of scalar product • Method for trace • Method for nonlinear problems of eigenvalues: • Lizenzization • Minimax characterization • Usage of Silvester low of inertia • Examples from physics and technics • Examples from physics and technics • Lizenzization • Minimax characterization • Usage	Lecturer		Prof. dr Aleksandra	Kostić					
 Methods for linear problem of eigenvalues: Method of interpolation, Method of Le Verierra Method of Krilov, Method of Danilevski Gives method of rotation Jacobi method Householder method Rouseholder method QR method QR method Method of arbitrary vector Method of scalar product Method of scalar product Method of scalar product Method of scalar product Method of exhausting Generalized problem of eigenvalues Structured matrices and methods for them. As an example, we take Toeplitz matrix and suitable methods. Examples from physics and technics Methods for nonlinear problems of eigenvalues: Linearization Usage of Silvester low of inertia Especially quadratic and rational problems of eigenvalues. Examples from physics and technics In Desanka P. Radunović, Numeričke metode, akademska misao, Beograd 2003. A. Kostić, Applied linear algebra in action, Books on Demand. (2016) 57; 83. F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review. 43 (2001) 235 - 286. Homework 10 5 Projects 50 30 Final exam 40 20 Sinumax characterizes have finear algebra Appl. 16 (2009) 82 - 93. A. Kostić and H. Voss, On Sylvester's law of inertia for nonlinear eigenvalue problems, Electr. Trans. Numer. Anal. 40 (2013) 82 - 95. Kostić Wetfahren zur Bestimmung einiger extremaler Eigenwerte einer Total 100 55 </td <td>Cours</td> <td>se Goals</td> <td colspan="6">Each mechanical system has a vibrating property. The analog phenomenon also encounters electrical systems in the form of oscillating electric circuits. Vibration conditions are mathematically described in the form of differential equation systems or differential equations. This leads to problems of eigenvalues. Due to the problem of eigenvalues have been arise of a important place in numeric and applied mathematics. The goal is to adopt the attenders of exposition of methods and to operate scientific-research work especially in the nonlinear problems of eigenvalues, which is currently very actual.</td>	Cours	se Goals	Each mechanical system has a vibrating property. The analog phenomenon also encounters electrical systems in the form of oscillating electric circuits. Vibration conditions are mathematically described in the form of differential equation systems or differential equations. This leads to problems of eigenvalues. Due to the problem of eigenvalues have been arise of a important place in numeric and applied mathematics. The goal is to adopt the attenders of exposition of methods and to operate scientific-research work especially in the nonlinear problems of eigenvalues, which is currently very actual.						
 Method of interpolation, Method of Le Verierra Method of Kiclov, Method of Danilevski Gives method of rotation Jacobi method Householder method Renthod QR method QR method Method of arbitrary vector Method of scalar product Method of scalar product Method of race Method of race Method of race Method of race Structured matrices and methods for them. As an example, we take Toeplitz matrix and suitable methods. Examples from physics and technics Methods for nonlinear problems of eigenvalues: Linearization Usage of Silvester low of inertia Especially quadratic and rational problems of eigenvalues. Examples from physics and technics Examples from physics and technics Ketwey 43 (2001) 235 - 286. H. Voss, A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter, Numer. Linear Algebra Appl. 16 (2009) 899-913. A. Kostić and H. Voss, On Sylvester's law of inertia for nonlinear eigenvaluear problems depending continuously on the eigenparameter, Numer. Linear Algebra Appl. 16 (2009) 55 K. Kostić, Arefler zu Bestimmung einiger extremaler Eigenverte einer 	COU	RSE CONTEN	Т						
[1] Desanka P. Radunović , Numeričke metode, akademska misao, Beograd 2003.CriterionMaximum pointsMinimum points[2] A. Kostić, Applied linear algebra in action, Books on Demand. (2016) 57- 	- G - Jz - H - L - Q - M - M - M - M - M - S - S - E - M - L - M - U - E	Gives method of rotation Jacobi method Householder method LR method QR method QR method Method of arbitrary vector Method of scalar product Method of scalar product Method of trace Method of trace Method of exhausting Generalized problem of eigenvalues Structured matrices and methods for them. As an example, we take Toeplitz matrix and suitable methods. Examples from physics and technics Methods for nonlinear problems of eigenvalues: Linearization Minimax characterization Usage of Silvester low of inertia Especially quadratic and rational problems of eigenvalues.							
2003.Criterionpointspoints[2] A. Kostić, Applied linear algebra in action, Books on Demand. (2016) 57- 83.1.Homework105[3] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review. 43 (2001) 235 - 286.1.Homework105[4] H. Voss, A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter, Numer. Linear Algebra Appl. 16 (2009) 899-913.2.Projects5030[5] A. Kostić and H. Voss, On Sylvester's law of inertia for nonlinear eigenvalue problems, Electr. Trans. Numer. Anal. 40 (2013) 82 - 93.3.Final exam4020[6] A. Kostić, Verfahren zur Bestimmung einiger extremaler Eigenwerte einerTotal10055			LITERAT	URE			GRADING		
83. 1. Homework 10 5 [3] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review. 43 (2001) 235 - 286. 1. Homework 10 5 [4] H. Voss, A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter, Numer. Linear Algebra Appl. 16 (2009) 899-913. 2. Projects 50 30 [5] A. Kostić and H. Voss, On Sylvester's law of inertia for nonlinear eigenvalue problems, Electr. Trans. Numer. Anal. 40 (2013) 82 - 93. 3. Final exam 40 20 [6] A. Kostić, Verfahren zur Bestimmung einiger extremaler Eigenwerte einer Total 100 55			nović , Numeričke r	netode, akademska misao, B	eograd C	riterion			
 [3] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review. 43 (2001) 235 - 286. [4] H. Voss, A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter, Numer. Linear Algebra Appl. 16 (2009) 899-913. [5] A. Kostić and H. Voss, On Sylvester's law of inertia for nonlinear eigenvalue problems, Electr. Trans. Numer. Anal. 40 (2013) 82 - 93. [6] A. Kostić, Verfahren zur Bestimmung einiger extremaler Eigenwerte einer 			ed linear algebra in ac	tion, Books on Demand. (20	16) 57-	Homework	10	5	
899-913.3.Final exam4020[5] A. Kostić and H. Voss, On Sylvester's law of inertia for nonlinear eigenvalue problems, Electr. Trans. Numer. Anal. 40 (2013) 82 - 93.Total10055[6] A. Kostić, Verfahren zur Bestimmung einiger extremaler Eigenwerte einerTotal10055	[3] F R [4] H	. Tisseur and K eview. 43 (2001) I. Voss, A min) 235 - 286. Imax principle for n	onlinear eigenproblems dep	ending 2.	Projects	50	30	
[6] A. Kostić, Verfahren zur Bestimmung einiger extremaler Eigenwerte einer	89 [5] A	99-913. Kostić and H. '	Voss, On Sylvester's la	aw of inertia for nonlinear eige	3.	Final exam	40	20	
	[6] A	. Kostić, Verfah	nren zur Bestimmung	einiger extremaler Eigenwert		Total	100	55	

Wiegandt, Radical Theory of Rings, Pure and Applied Mathematics 261, Marcel Dekker, 2004. The 2 homeworks are planed each 5 points. Two projects from the nonlinear problems eigenvalues. Every project is 25 points.