Program			Туре	e of studies (cycle)	Third cycle						
			Nam	ne of the program	Natural and mathematical sciences in education						
Course											
Course title Topo		- ologica	ogical dynamical systems								
Course code S		Semester	Course status			ECTS credits	Contact hours				
AMAT 605						30					
Teaching	Teacher			Prof. Dr. Senada Kalabušić							
staff	Other staff			Doc. Dr. Esmir Pilav							
Course goals	The goal of the course is to give to the students a basic knowledge about topological dynamical										
	systems.										
Course content/topics											

Discrete dynamical systems. Difference equations. Population growth model.

Linear dynamical systems.

Maps. Arnold's cat map, Baker's map, Circle map, Henon map, Horseshoe map,

Logistic map, Duffing map, Complex quadratic map,

Fixed (Equilibrium) points. Periodic points. Graphical iteration and stability. Fixed points for qudaratic family

Limit sets. α -limit set. Nonwandering point. Invariant set

Invariant Cantor sets for the quadratic family.

Conjugacy and structural stability.

Homeomorphisms of the circle. Rotation number. Examples.

The period doubling. 2-cycles. 22-cycles. Beyond $\mu\infty$.

Li-Yorke theorem. Sharkovski ordering. Sharkovski theorem. Examples for Sharkovski theorem.

	LITERATURE	Grading				
[1]	K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos (An		Criterion	Points	Cut-off	
	Introduction to Dynamical Systems), Springer,				points	
	1996.	1.	Homework	20	10	
[2]	S. Lynch, Dynamical systems with applications		assignment			
	using Mathematica, BirkhÄauser, 2007.	2.	Project	30	15	
[3]	G. Teschl, Ordinary Differential Equations and	3	Final exam	50	30	
	Dynamical Systems, Springer, 2009.		Total	100	55	
[4]	M. Hirsh, S. Smale, R. Devaney, Differential					
	equations, dynamical systems and an introduction					
	to chaos, Elsevier, 2004.					
[5] Robert L. Devaney, An Introduction to Chaotic						
Dynamical Systems, 2nd edition, 2003.						
[6] Saber N. Elaydi, Discrete Chaos, Chapman-						
Hall/CRC, 2000.						
[7] M.R.S. Kulenović, O. Merino, Discrete						
	Dynamical Systems and Difference Equations					
	with Mathematica, Chapman-Hall/CRC, 2002.					
[8] C. Robinson, Dynamical Systems, CRC, 2nd						
	edition, 1999.					
[9] S. Wiggins, Introduction to applied nonlinear						
	dynamical systems and chaos, Springer, 2003.					